удк 517.51

О.Н. Литвин, д-р физ.-мат. наук (Харьк. инж.-пед. ин-т)

ИНТЕРЛИНАЦИЯ ФУНКЦИЙ 2-Х ПЕРЕМЕННЫХ НА М ($M \geq 2$) ПРЯМЫХ С НАИВЫСШЕЙ АЛГЕБРАИЧЕСКОЙ ТОЧНОСТЬЮ

Предложен общий алгоритм построения операторов интерлинации $\bar{O}_{M N} f(\mathrm{x}), x=\left(x_{1}, x_{2}\right)$ со свойствами

$$
\begin{gathered}
\left.\frac{\partial^{s} \bar{O}_{M N} f}{\partial v_{k}^{s}}\right|_{\mathrm{r}_{k}}=\left.\frac{\partial^{s} f}{\partial v_{k}^{s}}\right|_{\mathrm{r}_{k}}=\left.\varphi_{k s}(x)\right|_{\mathrm{r}_{k}}, k=\overline{1, M} ; \quad s=\overline{0, N}, \\
\bar{O}_{M N} x^{\alpha} \equiv x^{\alpha}, 0 \leq|\alpha|=\alpha_{1}+\alpha_{2} \leq M(N+1)-1, \quad x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}},
\end{gathered}
$$

где $\left\{\Gamma_{k}\right\}$ - заданное множество прямых произвольного расположения на плоскости $O x_{1} x_{2}$, $v_{k} \perp \Gamma_{k}$ Приведено интегральное представление остатка приближения функции $f(x)$ операторами $\bar{O}_{M N} f(\mathrm{x})$. Рассмотрены примеры операторов интерлинации с сохранением класса $C^{r}\left(R^{2}\right)$, а также операторов, не сохраняющих класс дифференцируемости, которому принадлежит функция $f(\mathrm{x})$.

Запропоновано загальний алгоритм побудови операторів інтерлінаціі $\bar{O}_{\text {мN }} f(\mathrm{x}), x=\left(x_{1}, x_{2}\right)$ з властивостями

$$
\begin{gathered}
\left.\frac{\partial^{s} \bar{O}_{M N} f}{\partial v_{k}^{s}}\right|_{\mathrm{r}_{k}}=\left.\frac{\partial^{s} f}{\partial v_{k}^{s}}\right|_{\mathrm{r}_{k}}=\left.\varphi_{k s}(x)\right|_{\mathrm{r}_{\mathrm{k}}}, k=\overline{1, M} ; \quad s=\overline{0, N}, \\
\bar{O}_{M N^{\prime}} x^{\alpha} \equiv x^{\alpha}, 0 \leq|\alpha|=\alpha_{1}+\alpha_{2} \leq M(N+1)-1, \quad x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}},
\end{gathered}
$$

де $\left\{\Gamma_{k}\right\}$ - задана множина прямих довільного розміщення на площині $O x_{1} x_{2}, v_{k} \perp \Gamma_{k}$. Наведено інтегральне зображення залишку наближення функціі $f(\mathbf{x})$ операторами $\bar{O}_{M N} f(\mathbf{x})$. Розглянуто приклади операторів інгерлінації із збереженням класу $C^{r}\left(R^{2}\right)$, а також операторів, які не зберігають клас диференційовності, якому належить функція $f(\mathrm{x})$.

1. Одним из важных показателей качества операторов теории приближения дифференцируемых функций является степень полиномов, восстанавливаемых этими операторами, так как в силу теорем Вейерштрасса для всякой непрерывной функции существует последовательность полиномов, равномерно сходящаяся к ней в замкнутой ограниченной области. Поэтому актуальной является задача построения операторов с заданными интерлинационными свойствами, имеющих наивысшую алгебраическую точность. В данной работе приводится общий метод решения этой задачи, т.е. задачи нахождения операторов $\bar{O}_{M N} f(x)$ со свойствами ($\Gamma_{k}, k=\overline{1, M}$, - заданная система линий на плоскости)

$$
\begin{gather*}
\frac{\partial^{s} \bar{O}_{M N} f(x)}{\partial v_{k}^{s}}=\frac{\partial^{s} f(x)}{\partial \bar{v}_{k}^{s}}=\varphi_{k s}(x), x=\left(x_{1}, x_{2}\right) \in \Gamma_{k}, k=\overline{1, M}, s=\overline{0, N}, \tag{1}\\
\bar{O}_{M N} x^{\alpha} \equiv x^{\alpha}, 0 \leq|\alpha| \leq M(N+1)-1, \alpha=\left(\alpha_{1}, \alpha_{2}\right), \\
x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}},|\alpha|=\alpha_{1}+\alpha_{2} . \tag{2}
\end{gather*}
$$

Здесь $f(x)$ - интерлинируемая функция, $f(x) \in C^{r}\left(R^{2}\right), N+1 \leq r \leq M(N+1)$ -$-1, \varphi_{k, s}(x) \in C^{r-s}\left(R^{2}\right), k==\overline{1, M}, s=\overline{0, N}$.

Предположим, что построен оператор интерлинации $O_{M, N}$ со свойствами
(1), не обладающий наивысшей алгебраической точностью, т.е. не удовлетворяющий условиям (2). Пусть $R_{M, N} f(x)$ - остаток приближения функции $f(x)$ операторами $O_{M, N} f(x)$:

$$
\begin{equation*}
f(x)=O_{M, N} f(x)+R_{M, N} f(x) \tag{3}
\end{equation*}
$$

Предположим, что интерлинируемая функция $f(x)$ принадлежит классу $f(x)$ $\in \in C^{r}\left(R^{2}\right), r=M(N+1)$. Тогда для нее можно записать формулу Тейлора по степеням $\left(x-x^{(0)}\right)^{\alpha}=\left(x-x_{1}^{(0)}\right)^{\alpha_{1}}\left(x-x_{2}^{(0)}\right)^{\alpha_{2}}$:

$$
\begin{equation*}
f(x)=T_{r-1} f(x)+R_{r} f(x), \tag{4}
\end{equation*}
$$

где $T_{r-1} f(x)$ - полином Тейлора степени $r-1$,

$$
T_{r-1} f(x)=\sum_{0 \leq|\alpha| \leq r-1} f^{(\alpha)}\left(x^{(0)}\right) \frac{\left(x-x^{(0)}\right)^{\alpha}}{\alpha!}, \alpha!=\alpha_{1}!\alpha_{2}!
$$

$R{ }_{\wedge} f(x)$ - остаточный член формулы Тейлора,

$$
R_{r} f(x)=\int_{0}^{1}\left[\frac{\partial^{r}}{\partial t^{r}} f\left(x^{(0)}+t\left(x-x^{(0)}\right)\right)\right] \frac{(1-t)^{r-1}}{(r-1)!} d t .
$$

Здесь $x^{(0)}+t\left(x-x^{(0)}\right)=\left(x_{1}^{(0)}+t\left(x_{1}-x_{1}^{(0)}\right), x_{2}^{(0)}+t\left(x_{2}-x_{2}^{(0)}\right)\right), x^{(0)}=\left(x_{1}^{(0)}, x_{2}^{(0)}\right)-$ произвольная точка.

Теорема 1. Onepaтор

$$
\begin{equation*}
\bar{O}_{M N} f(x)=O_{M, N} f(x)+R_{M N}\left[T_{r-1} f(x)\right] \tag{5}
\end{equation*}
$$

является интерлинантом со свойствами (1), (2).
Доказательство. Оператор $\bar{O}_{M N}$ удовлетворяет условиям (1), так как этим условиям удовлетворяет оператор $O_{M, N}$, а остаток удовлетворяет условиям

$$
\frac{\partial^{s} R_{M, N} f(x)}{\partial v_{k}^{s}}=0, x \in \Gamma_{k}, k=\overline{1, M}, s=\overline{0, N} .
$$

Справедливость равенств (2) следует из того, что всякий полином $P_{r-1}(x)$ степени $r-1$ тождественно совпадает со своим полиномом Тейлора: $P_{r-1}(x) \equiv$ $\equiv T_{r-1}\left[P_{r-1}(x)\right]$. Теорема 1 доказана.

Замечание. Аналогичный результат получим, если будем использовать вместо формулы Тейлора (4) какую-нибудь иную формулу приближения функции f полиномами степени $r-1$ (например, интерполяционную формулу Эрмита). При этом, очевидно, можно ослабить требования на дифференциальные свойства функции $f(x)$ (например, рассмотреть случай, когда $f \in C^{q}\left(R^{2}\right)$, $N+1 \leq q \leq M(N+1))$.

Теорема 2. Для остатка $\bar{R}_{M, N} f(x)=\left(I-\bar{O}_{M N}\right) f(x)$ приближения функции f операторами $\bar{O}_{M, N}$ справедливо равенство

$$
\begin{equation*}
\bar{R}_{M, N} f(x)=\bar{R}_{M, N}\left[R_{r} f(x)\right] \tag{6}
\end{equation*}
$$

Для получения равенства (6) достаточно подставить в остаточный член $R_{M, N}$ формулы (3) вместо функции f ее формулу Тейлора (4). Теорема 2 доказана.
2. Рассмотрим примеры интерлинации на $M(M \geq 2)$ прямых. (В цитируемых ниже работах примеры рассматривались при других предположениях).

Пример 1. Рациональная интерлинация без сохранения класса $C^{r}\left(R^{2}\right)$ [1]. Пусть

$$
\begin{gathered}
\Gamma_{k}: \omega_{k}(x):=x_{1} a_{k}+x_{2} b_{k}-\gamma_{k}=0, k=\overline{1, M}, \\
a_{k}^{2}+b_{k}^{2}=1, v_{k}=\nabla \omega_{k}=\left(a_{k}, b_{k}\right), x-\omega_{k}(x) \nabla \omega_{k}(x)=\left(x_{1}-\omega_{k}(x) a_{k},\right. \\
\left.x_{2}-\omega_{k}(x) b_{k}\right), h_{1}(x)+\ldots+h_{M}(x) \equiv 1, \\
h_{k}(x)=\prod_{\substack{i=1 \\
i \neq k}}^{M} \omega_{i}^{\bar{N}+1}(x) / \sum_{j=1}^{M} \prod_{\substack{i=1 \\
i \neq j}}^{M} \omega_{i}^{N+1}(x), k=\overline{1, M}, \\
\bar{N}=\left\{\begin{array}{lll}
N, & N=2 m+1, & m \in \mathbb{N}^{0} \\
N+1, & N=2 m, &
\end{array}\right.
\end{gathered}
$$

Тогда оператор $\bar{L}_{M, N} f(x) \in C^{r-N}\left(R^{2} \backslash G\right), G=\bigcup_{(i, k)}\left\{A_{i k}\right\}, A_{i k}=\Gamma_{i} \cap \Gamma_{k} \neq \emptyset$,

$$
\bar{L}_{M, N} f(x)=\sum_{k=1}^{M} h_{k}(x)\left[\sum_{s=0}^{N} \varphi_{k s}\left(x-\omega_{k}(x) \nabla \omega_{k}\right) \frac{\omega_{k}^{s}(x)}{s!}+\right.
$$

$$
\left.+\int_{0}^{\omega_{k}(x)}\left[\frac{\partial^{N+1}}{\partial t^{N+1}} \sum_{0 \leq|\alpha| \leq r-1} \frac{f^{(\alpha)}\left(x^{(0)}\right)}{\alpha!}\left(x-\left(\omega_{k}(x)-t_{k}\right) \nabla \omega_{k}-x^{(0)}\right)^{\alpha}\right] \frac{\left(\omega_{k}(x)-t_{k}\right)^{N}}{N!} d t_{k}\right]
$$

является интерлинантом со свойствами (1), (2). При этом

$$
\begin{gathered}
f(x)-\widetilde{L}_{M, N} f(x)=\sum_{k=1}^{M} h_{k}(x) \int_{0}^{\omega_{k}(x)}\left\{\frac { \partial ^ { N + 1 } } { \partial t _ { k } ^ { N + 1 } } \int _ { 0 } ^ { 1 } \left[\frac { \partial ^ { r } } { \partial t ^ { r } } f \left(x^{(0)}+t\left(x-\left(\omega_{k}(x)-\right.\right.\right.\right.\right. \\
\left.\left.\left.\left.\left.-t_{k}\right) \nabla \omega_{k}-x^{(0)}\right)\right)\right] \frac{(1-t)^{r-1}}{(r-1)!} d t\right\} \frac{\left(\omega_{k}(x)-t_{k}\right)^{N}}{N!} d t_{k} .
\end{gathered}
$$

Интегрированием по частям (по t) в последнем равенстве можно уменьшить порядок производных от f до $q \leq M(N+1)$.

Пример 2 [2]. Полиномиальная интерлинация Тейлора без сохранения класса $C^{r}\left(R^{2}\right)$.

Используем обозначения из примера 1. Пусть также

$$
\tau_{k}=\left(b_{k},-a_{k}\right), \tau_{k} \| \Gamma_{k}, T_{p}^{(k)}=\left(\tau_{k}, \nabla\right)^{p}=\left(b_{k} \frac{\partial}{\partial x_{1}}-a_{k} \frac{\partial}{\partial x_{2}}\right)^{p}, \Delta_{i k}=-\Delta_{k i}=T_{1}^{(k)} \omega_{i},
$$

$\Omega_{M}=\left\{(i, k) \mid \Gamma_{i} \cap \Gamma_{k}=A_{i k} \neq \varnothing, i \neq k, i, k \in\{1,2, \ldots, M\}\right\}, A_{i k} \neq A_{i^{\prime} k^{\prime}},(i, k) \neq\left(i^{\prime}, k^{\prime}\right)$,

$$
D_{p}^{(k)}=\left(\Delta \omega_{k}, \nabla\right)^{p} .
$$

Операторы $T_{p}^{(k)}=\partial^{p} / \partial \tau_{k}^{p}$ являются операторами p-го порядка дифференцирования по касательной к $F_{k} D_{p}^{(k)}=\partial^{p} / \partial v_{k}^{p}$,

$$
L_{k l} f(x)=\sum_{s=0}^{N} \frac{\omega_{k}^{s}(x)}{s!} \sum_{i=0}^{s}(-1)^{i} C_{s}^{i} D_{i}^{(k)}\left[\varphi_{k, s-i}\left(A_{k l}-\frac{\tau_{k}}{\Delta_{k l}} \omega_{l}(x)\right)\right]+
$$

$$
\begin{gathered}
+\sum_{p=0}^{N} \frac{\omega_{l}^{p}(x)}{p!} \sum_{j=0}^{p}(-1)^{j} C_{p}^{j} D_{j}^{l l)}\left[\varphi_{l, p-j}\left(A_{k l}-\frac{\tau_{l}}{\Delta_{l k}} \omega_{k}(x)\right)\right]-\sum_{s, p=0}^{N} \frac{\omega_{k}^{s} \omega_{l}^{p}}{s!p!}\left(J_{s p}^{k l} f\right), \\
J_{s p}^{k l} f=\Delta_{l k}^{-p} \Delta_{k l}^{-s}\left(T_{s}^{(l)} T_{p}^{(k)} f\right)\left(A_{k l}\right)=g_{p s}^{l k} f, \\
k, l \in\{1,2, \ldots, M\}, 0 \leq s, p \leq N \\
h_{k l}(x)=\prod_{m=1, m \neq k, l}^{M} \omega_{m}^{N+1}(x)\left\{\prod_{m=1, m \neq k, l}^{M} \omega_{m}^{-N+1}(x)\right\}_{\left(A_{k l}\right)}^{(N, N)}, \sum_{(k, l) \in \Omega_{M}} h_{k l}(x) \equiv 1
\end{gathered}
$$

Здесь

$$
\{g(x)\}_{\left(A_{k l}\right)}^{(N, N)}=\sum_{s, p=0}^{N} \frac{\left(\omega_{k} / \Delta_{k l}\right)^{s}\left(\omega_{l} / \Delta_{l k}\right)^{p}}{s!p!}\left[\left(T_{s}^{(l)} T_{p}^{(k)} g\right)\left(A_{k l}\right)\right] .
$$

Тогда оператор $\bar{O}_{M N} f(x) \in C^{r-2 N}\left(R^{2}\right)$,

$$
\begin{gathered}
\bar{O}_{M, N} f(x)=\sum_{(k, l) \in \bigcap_{M}} h_{k l}(x)\left\{L_{k l} f(x)+\int_{0}^{\omega_{k}} \int_{0}^{\omega_{l}}\left[\frac{\partial^{2 N+2}}{\partial t_{k}^{N+1} \partial t_{l}^{N+1}} \times\right.\right. \\
\left.\left.\times \sum_{0 \leq|\alpha| \leq r-1} \frac{f^{(\alpha)}\left(x^{(0)}\right)}{\alpha!}\left(A_{k l}-\frac{\tau_{k}}{\Delta_{k l}} t_{l}-\frac{\tau_{l}}{\Delta_{l k}} t_{k}-x^{(0)}\right)^{\alpha}\right] \frac{\left(\omega_{k}-t_{k}\right)^{N}\left(\omega_{l}-t_{l}\right)^{N}}{N!N!} d t_{k} d t_{l}\right\}
\end{gathered}
$$

является интерлинантом с наивысшей алгебраической точностью и удовлетворяет условиям (1), (2). При этом

$$
f(x)-\bar{O}_{M, N} f(x)=\sum_{(k, l) \in \Omega_{M}} h_{k l}(x) \int_{0}^{\omega_{k}} \int_{0}^{\omega_{l}}\left\{\frac{\partial^{2 N+2}}{\partial t_{k}^{N+1} \partial t_{l}^{N+1}} \times\right.
$$

$\left.\times \int_{0}^{1}\left[\frac{\partial^{r}}{\partial t^{r}} f\left(x^{(0)}+t\left(A_{k l}-\frac{\tau_{k}}{\Delta_{k l}} t_{l}-\frac{\tau_{l}}{\Delta_{l k}} t_{k}-x^{(0)}\right)\right)\right] \frac{(1-t)^{r-1}}{(r-1)!} d t\right\} \frac{\left(\omega_{k}-t_{k}\right)^{N}\left(\omega_{l}-t_{l}\right)^{N}}{N!N!} d t_{k} d t_{l}$.
Пример 3 [3]. Интерлинация на $M, M \geq 2$, параллельных прямых с сохранением класса $C^{r}\left(R^{2}\right)$. Пусть $\Omega=\left\{-\infty<x_{1}<+\infty, a \leq x_{2} \leq b\right\} ; a \leq x_{21}<\ldots<x_{2 M} \leq$ $\leq b ; \Gamma_{k}: \omega_{k}(x):=x_{2}-x_{2 k}=0, k=\overline{1, M},-\infty<\beta_{0}<\beta_{1}<\ldots<\beta_{N}<+\infty$. Числа $\beta_{i}, i=$ $=\overline{0, N}$, предполагаем заданными, числа $\lambda_{N s i}$ находим путем решения систем уравнений

$$
\sum_{i=0}^{N} \lambda_{N s i} ; \beta_{i}^{p}=\delta_{s p}, 0 \leq s, p \leq N ; \delta_{s s}=1, \delta_{s p}=0, s \neq p
$$

Пусть

$$
\begin{gathered}
E_{M, N, \beta} f(x)=\sum_{k=1}^{M}\left\{h_{k 0}\left(x_{2}\right) \sum_{i=0}^{N} \lambda_{N 0 i} f\left(x_{1}+\beta_{i}\left(x_{2}-x_{2 k}\right), x_{2 k}\right)+\right. \\
\left.+\sum_{s=1}^{N} h_{k s}\left(x_{2}\right) \sum_{i=0}^{N} \lambda_{N s i} \int_{0}^{x_{1}+\beta_{i}\left(x_{2}-x_{2 k}\right)} f^{(0, s)}\left(t, x_{2 k}\right) \frac{\left(x_{1}+\beta_{i}\left(x_{2}-x_{2 k}\right)-t\right)^{s-1}}{(s-1)!} d t\right\},
\end{gathered}
$$

где

$$
\begin{aligned}
& h_{k s}\left(x_{2}\right)= \prod_{i=1, i \neq k}^{M}\left(x_{2}-x_{2 i}\right)^{N+1}\left\{\prod_{i=1, i \neq k}^{M}\left(x_{2}-x_{2 i}\right)^{-N-1}\right\}_{\left(x_{2 k}\right)}^{(N-s)} \\
&\{\varphi(y)\}_{\left(y_{k}\right)}^{(v)}=: \\
& \sum_{s=0}^{v} \varphi^{s}\left(y_{k}\right) \frac{\left(y-y_{k}\right)^{s}}{s!}
\end{aligned}
$$

Тогда оператор

$$
\bar{E}_{M, N, \beta} f(x)=E_{M, N, \beta} f(x)+
$$

$$
+\sum_{k=1}^{M} \sum_{s=0}^{N} h_{k s}\left(x_{2}\right)\left\{\frac{\left(x_{2}-x_{2 k}\right)^{s}}{s!} \int_{x_{2 k}}^{x_{2}}\left[\frac{\partial^{q}}{\partial \eta^{q}} \sum_{0 \leq|\alpha| \leq r-1} \frac{f^{(\alpha)}\left(x^{(0)}\right)}{\alpha!}\left(x_{1}-x_{1}^{(0)}\right)^{\alpha_{1}}\left(\eta-x_{2}^{(0)}\right)^{\alpha_{2}}\right] \times\right.
$$

$$
\times \frac{\left(x_{2 k}-\eta\right)^{q-1-s}}{(q-1-s)!} d \eta-\sum_{i=0}^{N} \lambda_{N s i} i_{i}^{N+1} \int_{x_{2 k}}^{x_{2}}\left[\frac{\partial^{N+1}}{\partial x_{1}^{N+1-s} \partial x_{2}^{s}} \sum_{0 \leq|\alpha| \leq r-1} \frac{f^{(\alpha)}\left(x^{(0)}\right)}{\alpha!} \times\right.
$$

$$
\left.\left.\times\left(x-x^{(0)}\right)^{\alpha}\right]\left(x_{1}+\beta_{i}\left(\eta-x_{2 k}\right), x_{2 k}\right) \frac{\left(x_{2}-\eta\right)^{N}}{N!} d \eta\right\}, N+1 \leq q \leq r,
$$

является интерлинантом со свойствами (1), (2); $f \in C^{q}\left(R^{2}\right) \Rightarrow \bar{E}_{M, N, \beta} f \in C^{q}\left(R^{2}\right)$. При этом

$$
\begin{aligned}
& f(x)-\bar{E}_{M, N, \beta} f(x)= \\
& =\sum_{k=1}^{M} \sum_{s=0}^{N} h_{k s}\left(x_{2}\right)\left\{\frac { (x _ { 2 } - x _ { 2 k }) ^ { s } } { s ! } \int _ { x _ { 2 k } } ^ { x _ { 2 } } \left[\frac{\partial^{q}}{\partial \eta^{q}} \int_{0}^{1}\left[\frac{\partial^{r}}{\partial t^{r}} f\left(x^{(0)}+t\left(x_{1}-x_{1}^{(0)}, \eta-x_{2}^{(0)}\right)\right)\right] \times\right.\right. \\
& \left.\times \frac{(1-t)^{r-1}}{(r-1)!} d t\right] \frac{\left(x_{2 k}-\eta\right)^{q-1-s}}{(q-1-s)!} d \eta-\sum_{i=0}^{N} \lambda_{N s i} \beta_{i}^{N+1} \int_{x_{2 k}}^{x_{2}}\left[\frac { \partial ^ { N + 1 } } { \partial x _ { 1 } ^ { N + 1 - s } \partial x _ { 2 } ^ { s } } \int _ { 0 } ^ { 1 } \left[\frac { \partial ^ { r } } { \partial t ^ { r } } f \left(x^{(0)}+\right.\right.\right. \\
& \left.\left.\left.\left.+t\left(x_{1}-x^{(0)}\right)\right)\right] \frac{(1-t)^{r-1}}{(r-1)!} d t\right]\left(x_{1}+\beta_{i}\left(\eta-x_{2 k}\right), x_{2 k}\right) \frac{\left(x_{2}-\eta\right)^{N}}{N!} d \eta\right\} .
\end{aligned}
$$

Пример 4 [4]. Рациональная интерлинация с сохранением класса $C^{r}\left(R^{2} \backslash G\right), G=\bigcup_{(i, k)}\left\{A_{i k}\right\}$.

Пусть $\Gamma_{\dot{k}} \omega_{k}(x)=0, k=\overline{1, M}, t_{k}=x_{1} b_{k}-x_{2} a_{k}$; функции h_{k}, ω_{k} определены в примере 1 ; числа β_{i} заданы, а числа $\lambda_{N s i}$ находим так, как и в примере 3. Пусть

$$
\begin{gathered}
\Phi_{k}\left(t_{k}, \omega_{k}\right)=: f\left(t_{k} b_{k}+\omega_{k} a_{k}+\gamma_{k} a_{k},-t_{k} a_{k}+\omega_{k} b_{k}+\gamma_{k} b_{k}\right) \equiv f\left(x_{1}, x_{2}\right) \in C^{r}\left(R^{2}\right), \\
D_{k} f(x)=: \sum_{i=0}^{N} \lambda_{N 0 i} \Phi_{k}\left(t_{k}+\beta_{i} \omega_{k}, 0\right)+\sum_{s=1}^{N} \sum_{i=0}^{N} \lambda_{N s i} \int_{0}^{t_{k}+\beta_{i} \omega_{k}} \Phi_{k}^{(0, s)}(\xi, 0) \frac{\left(t_{k}+\beta_{i} \omega_{k}-\xi\right)^{s-1}}{(s-1)!} d \xi,
\end{gathered}
$$

$$
\begin{gathered}
D_{M, N} f(x)=h_{1}(x) D_{1} f(x)+\ldots+h_{M}(x) D_{M} f(x), \\
{\left[A_{N+1} \Phi_{k}\right](\xi, \eta)=:\left[\prod_{i=0}^{N}\left(-\beta_{i} \frac{\partial}{\partial t_{k}}+\frac{\partial}{\partial \omega_{k}}\right) \Phi_{k}\right](\xi, \eta), \Delta_{N i}=\prod_{j=0, j \neq i}^{N}\left(\beta_{j}-\beta_{i}\right) .}
\end{gathered}
$$

Тогда оператор $\bar{D}_{M, N} f(x) \in C^{r}\left(R^{2} \backslash G\right)$,

$$
\begin{gathered}
\bar{D}_{M, N} f(x)=D_{M, N} f(x)+\sum_{k=1}^{M} h_{k}(x) \int_{0}^{\omega_{k}}\left\{\sum _ { i = 0 } ^ { N } \Delta _ { N i } ^ { - 1 } \int _ { 0 } ^ { t _ { k } + \beta _ { i } (\omega _ { k } - \eta) } \left[A_{N+1} \times\right.\right. \\
\left.\left.\times \sum_{0 \leq|\alpha| \leq r-1} \Phi_{k}^{(\alpha)}(0,0) \frac{t_{k}^{\alpha_{1}} \omega_{k}^{\alpha_{2}}}{\alpha!}\right](\xi, \eta) \frac{\left(t_{k}+\beta_{i}\left(\omega_{k}-\eta\right)-\xi\right)^{N-1}}{(N-1)!} d \xi\right\} d \eta
\end{gathered}
$$

обладает свойствами (1), (2). При этом

$$
\begin{aligned}
& f(x)-\bar{D}_{M, N} f(x)=\sum_{k=1}^{M} h_{k}(x) \int_{0}^{\omega_{k}}\left\{\sum _ { i = 0 } ^ { N } \Delta _ { N i } ^ { - 1 } \int _ { 0 } ^ { t _ { k } + \beta _ { i } (\omega _ { k } - \eta) } \left[A _ { N + 1 } \int _ { 0 } ^ { 1 } \left[\frac{\partial^{r}}{\partial t^{r}} \times\right.\right.\right. \\
& \left.\left.\left.\times \Phi_{k}\left(t t_{k}, t \omega_{k}\right)\right] \frac{(1-t)^{r-1}}{(r-1)!} d t\right](\xi, \eta) \frac{\left(t_{k}+\beta_{i}\left(\omega_{k}-\eta\right)-\xi\right)^{N-1}}{(N-1)!} d \xi\right\} d \eta .
\end{aligned}
$$

Замечание 2. В случаях, когда рассматриваются рациональные операторы интерлинации (т.е. с рациональными весовыми функциями), следует учитывать, что эти операторы не определены на множестве $\left\{A_{i k}\right\}$, однако их можно доопределить в точках $A_{i k}$ так, что доопределенная функция будет принадлежать классу $C^{N}\left(R^{2}\right)$.

Замечание 3. Легко видеть, что по данным $\left\{\varphi_{k s}(x)\right\}$ можно определить $f^{(\alpha)}\left(A_{i k}\right), 0 \leq|\alpha| \leq N$, однако если $r>N+1$, то этих данных недостаточно для нахождения полинома Тейлора $T_{r-1} f(x)$.

Покажем на примере, как можно получить операторы интерлинации с наивысшей алгебраической точностью, пользуясь только лишь информацией о следах функции $\left\{\varphi_{k 0}(x)\right\}$.

Пример 5. Пусть среди прямых $\Gamma_{k}, k=\overline{1, M}$, нет параллельных, причем никакие три из них не пересекаются в одной точке. Тогда общее число точек пересечения $A_{i k}$ равно C_{M}^{2}. С другой стороны, всякий полином от двух переменных степени $M-1$ имеет C_{M+1}^{2} коэффициентов. Поэтому если мы проведем еще одну, вспомогательную, прямую Γ_{M+1} так, что она пересечет все предыдущие прямые в точках, не совпадающих с уже имеющимися точками $A_{i k}$, то в результате общее число точек $A_{i k} ; i, k=\overline{1, M+1}, i \neq k$, будет равно C_{M+1}^{2}, т.е. будет равно числу коэффициентов полинома $P_{M-1}(x)$. Тогда оператор

$$
l_{M, 0} f(x)=\sum_{(\mu, v) \in \bigcap_{M+1}} \prod_{m=1, m \neq \mu, v}^{M+1} \frac{\omega_{m}(x)}{\omega_{m}\left(A_{\mu v}\right)} f\left(A_{\mu v}\right)
$$

обладает свойствами: $l_{M, 0} f\left(A_{\mu v}\right)=f\left(A_{\mu v}\right),(\mu, v) \in \Re_{M+1} ; l_{M, 0} f(x) \in \mathbb{P}_{M-1}$; $l_{M, 0}[P(x)] \equiv P(x) \quad \forall P(x) \in \mathbb{P}_{M-1}$. Поэтому оператор [2]

$$
\begin{gathered}
\bar{O}_{M, 0} f(x)=\sum_{(i, j) \in \ell_{M}} \prod_{m=1, m \neq i, j}^{M+1} \frac{\omega_{m}(x)}{\omega_{m}\left(A_{i j}\right)}\left[\varphi_{i 0}\left(A_{i j}-\frac{\tau_{i}}{\Delta_{i j}} \omega_{j}\right)+\right. \\
\left.+\varphi_{j 0}\left(A_{i j}-\frac{\tau_{j}}{\Delta_{j i}} \omega_{i}\right)-f\left(A_{i j}\right)+\int_{0}^{\omega_{i}} \int_{0}^{\omega_{j}} \frac{\partial^{2}}{\partial t_{i} \partial t_{j}}\left(\left(l_{M, 0} f\right)\left(A_{i j}-\frac{\tau_{i}}{\Delta_{i j}} t_{j}-\frac{\tau_{j}}{\Delta_{j i}} t_{i}\right)\right) d t_{i} d t_{j}\right]
\end{gathered}
$$

будет обладать свойствами (см. также пример 2)

$$
\bar{O}_{M, 0} f(x)=f(x)=\varphi_{k 0}(x), x \in \Gamma_{k}, k=\overline{1, M}, \bar{O}_{M, 0} x^{\alpha} \equiv x^{\alpha}, 0 \leq|\alpha| \leq M-1 .
$$

При этом для остатка $\bar{R}_{M, 0} f(x)=\left(I-\bar{O}_{M, 0}\right) f(x)$ справедливо равенство

$$
\bar{R}_{M, 0} f(x)=\sum_{(i, j) \in \Omega_{M}} \prod_{\substack{m=1 \\ m \neq i, j}}^{M+1} \frac{\omega_{m}(x)}{\omega_{m}\left(A_{i j}\right)} \int_{0}^{\omega_{i}} \int_{0}^{\omega_{j}}\left[\frac{\partial^{2}}{\partial t_{i} \partial t_{j}}\left(\left(f-l_{M, 0} f\right)\left(A_{i j}-\frac{\tau_{i}}{\Delta_{i j}} t_{j}-\frac{\tau_{j}}{\Delta_{j i}} t_{i}\right)\right)\right] d t_{i} d t_{j}
$$

Аналогичные алгоритмы можно найти и для других случаев взаимн̇ого расположения прямых $\Gamma_{k}, k=\overline{1, M}$, также для интерлинации производных.
3. В заключение отметим следующее. Во-первых, число примеров можно было бы увеличить, включив, например, сплайн-интерлинацию. (т.е. интерлинацию, вспомогательные функции в которой являются сплайнами), однако здесь автору известны лишь частные случаи интерлинации на системе взаимно перпендикулярных прямых без сохранения класса дифференцируемости, которому принадлежит интерлинируемая функция $f(x)$ (см., например, $[5 ; 6 ; 7$, с. 333]).

Во-вторых, для эффективного использования операторов интерлинации, приведенных в примерах $1-5$, для приближения функций в замкнутых областях, пересекаемых прамыми интерлинации, желательно иметь оценки погрешности приближения. Здесь могут оказаться полезными приведенные выше формулы для остатков.

Отметим работы $[8,9]$, в которых также решена задача построения операторов интерлинации на трех сторонах треугольника ($M=3, N=0$) с наивысшей алгебраической точностью. Предложенный в данной работе метод построения таких операторов отличается не только общностью, но использует принципиально иной подход.

1. Литвин О. Н. Формула В. Л. Рвачева в случае областей с угловыми точками // Укр. мат. журн. - 1972. - 24, №2. - С. 238-244.
2. Литвин О. Н. Полиномиальная интерлинация Тейлора функции $2-x$ переменных на нескольких прямых // Изв. вузов. Сер. мат. - 1989, №2. - С. 19-27.
3. Литвин O. H. Интерполяция данных Коши на нескольких параллельных прямых в R^{2} с сохранением класса дифференцируемости // Укр. мат. журн.- 1985.- 37, №4.- С. 509-513.
4. Литвин O. H. Интерлинация функций $2-\mathrm{x}$ переменных на $M(M>2)$ прямых с сохранением класса $C^{r}\left(R^{2}\right) / /$ Там же. - 1990. - 42, №12. - С. 1616-1625.
5. Литвин О. Н., Федько В. В. Обобщенная кусочно-эрмитова интерполяция // Там же. 1976. - 28, №6. - C. 812-819.
6. Mettke H. Fehlerabschatzungen zur zweidimensionalen splineinterpolation // Beitr. Numer. Math. - 1983. - N11. - P. 81 - 91.
7. Корнейчук Н. П. Сплайны в теории приближения. - М. : Наука, 1984. - 350 с.
8. Nelson G. M., Thomas D. H., Wixom J. A. Interpolation in triangles // Bull. Austral. Math. Soc. 1979. - 20. - P. 115-130.
9. Nielson G. M. Blending method of minimum norm for triangular domains // Rev. voum. math. pures et appl. - 1980. - 25, №6. P.- 899 - 910.

Получено 26.02.91

