## МНОГОМЕРНЫЕ КОВАРИАНТНЫЕ СЛУЧАЙНЫЕ ПОЛЯ НА КОММУТАТИВНЫХ ЛОКАЛЬНО КОМПАКТНЫХ ГРУППАХ

Рассматриваются однородные в широком смысле ковариантные случайные поля на коммутативных локально компактных группах со значениями в конечномерных комплексных гильбертовых пространствах. Доказана общая формула для корреляционного оператора такого поля, а также спектральное представление самого поля в виде ряда из стохастических интегралов по ортогональным случайным мерам.
Розглядаються однорідні в широкому розумінні коваріантні випадкові поля на комутативних локально компактних групах із значеннями в скінченновимірних комплексних гільбертових просторах. Доведена загальна формула для кореляційного оператора такого поля, а також спектральне зображення самого поля у вигляді ряду із стохастичних інтегралів по ортогональних випадкових мірах.

Пусть $X$ - коммутативная локально компактная топологическая группа, $K$ компактная топологическая группа, действующая на $X$ автоморфизмами, $U$ - неприводимое унитарное представление группы $K$ в конечномерном комплексном гильбертовом пространстве $H$. Пусть $\xi(x)$ - непрерывное в среднем квадратичном однородное в широком смысле случайное поле на $X$ со значениями в $H$ и нулевым средним. Это означает, что каждой точке $x \in X$ поставлен в соответствие случайный вектор $\xi(x)$ с интегрируемым квадратом нормы, причем отображение $\xi$ непрерывно действует из $X$ в пространство $L^{2}(\Omega, \mathcal{F}, P ; H)$ квадратично интегрируемых случайных векторов на основном вероятностном пространстве $(\Omega, \mathcal{F}, P)$. Кроме этого, справедливы неравенства

$$
\begin{gathered}
M \xi(x)=0 \\
B(x, y)=M \xi(x) \otimes \xi^{*}(y)=B(x-y)
\end{gathered}
$$

где знак $\otimes$ означает тензорное произведение в $H$.
Определение 1. Случайное поле $\xi(x)$ называется ковариантным (относительно группь $К$ и представления $U$ ), если для всех $х, y \in X$ и $g \in K$ выполнено равенство

$$
B(g x, g y)=U(g) B(x, y) U^{-1}(g)
$$

Это определение было введено в [1]. Там же при некоторых ограничениях на группы $X$ и $K$ была доказана общая формула для корреляционного оператора такого поля. Целью настоящей работы является получение спектральных разложений самого поля и его корреляционного оператора в терминах стохастических интегралов.

Замечание 1. Приведенное определение является обобщением классического определения однородного и изотропного случайного поля, которое получается при $X=\mathbb{R}^{n}, K=O(n), U(g)=1$. Различные частные случаи многомерных ковариантных случайных полей изучались в работах [2-4].

Обозначения. Пусть $\hat{X}$ - группа характеров группы $X$. Группа $K$ действует в $\hat{X}$ по правилу $(g \hat{x})(x)=\hat{x}\left(g^{-1} x\right)$.

Условие 1. В группе $\hat{X}$ существует измеримое сечение, т.е. борелевское множество $S$, пересекающееся с каждой орбитой группы $K$ ровно в одной точке. Кроме этого, естественное отображение из $S$ в пространство орбит $\hat{X} / K$,

ставящее в соответствие каждой точке ее орбиту, является гомеоморфизмом.
Пусть $\pi$ - отображение из $\hat{X}$ в $S$, ставящее в соответствие каждой точке $\hat{x} \in \hat{X}$ единственную точку $\pi(\hat{x}) \in S$, лежащую на одной орбите с $\hat{x}$. Пусть $U^{+}$- представление, контраградиентное представлению $U$, действующее в $H^{*}$ по формуле $U^{+}(g)=\left[U\left(g^{-1}\right)\right]^{*}$.

Пусть $K_{s}$ - стационарная подгруппа точки $s \in S, H_{s}$ - подпространство в $H^{*} \otimes H$, состоящее из векторов, инвариантных относительно представления $U^{+} \otimes U$ группы $K_{s}, \Phi$ - произвольная измеримая функция на $S$, значением которой в точке $s \in S$ является неотрицательно определенный оператор с единичным следом, принадлежащий $H_{s}$.

Пусть $\mu$ - мера Хаара на группе $K$, нормированная условием $\mu(K)=1$, $\mu_{\pi(\hat{x})}$ - образ меры $\mu$ при отображении $g \rightarrow g \pi(\hat{x})$ из $K$ в орбиту точки $\hat{x}$. Пусть $g(\hat{x})$ - произвольный элемент группы $K$, переводящий $\pi(\hat{x})$ в $\hat{x}, v$ произвольная конечная мера на $S$. В работе [1] доказано, что при выполнении условия 1 корреляционный оператор ковариантного случайного поля задается формулой

$$
\begin{equation*}
B(x, y)=\int_{S} \int_{\pi^{-1}(\pi(\hat{x}))} \hat{x}(x-y)\left(U^{+} \otimes U\right)(g(\hat{x})) \Phi(\pi(\hat{x})) d \mu_{\pi(\hat{x})}(g(\hat{x})) d v(\pi(\hat{x})) . \tag{1}
\end{equation*}
$$

Формула (1) имеет существенный недостаток. Ее правая часть содержит весьма сложный объект - функцию Ф. Наша ближайшая цель - выразить корреляционную функцию $B(x, y)$ через более простые объекты.

Условие 2. В группе $K$ существует цепочка вложенных друг в друга подгрупп

$$
\begin{equation*}
K=K_{0} \supset K_{1} \supset \ldots \supset K_{m}=\{e\} \tag{2}
\end{equation*}
$$

такая, что в нее входит стационарная подгруппа любой точки $s \in S$.
Будем обозначать начальными буквами греческого алфавита векторы ортогонального базиса Гельфанда - Цетлина [5], соответствующего цепочке (2).

Перепишем формулу (1) в базисе Гельфанда - Цетлина:

$$
\begin{align*}
B_{\alpha \beta}(x, y) & =\int_{S} \int_{\pi^{-1}(\pi(\hat{x}))} \hat{x}(x-y) \sum U_{\alpha \gamma}^{+}(g(\hat{x})) U_{\beta \varepsilon}(g(\hat{x})) \times \\
& \times \Phi_{\gamma \varepsilon}(\pi(\hat{x})) d \mu_{\pi(\hat{x})}(g(\hat{x})) d v(\pi(\hat{x})) . \tag{3}
\end{align*}
$$

Суммирование в формуле (3) ведется по векторам $\gamma$ из базиса Гельфанда Цетлина представления $U^{+}$и по векторам $\varepsilon$ из базиса представления $U$. Правая часть этой формулы записана в базисе, элементы которого представляют собой тензорное произведение $\gamma \otimes \varepsilon$. В пространстве $H^{*} \otimes H$ существует другой естественный базис. А именно: представление $U^{+} \otimes U$ является приводимым и распадается в прямую сумму неприводимых представлений $V$, каждое из которых может входить в эту сумму несколько раз. Пусть индекс $j$ нумерует эти вхождения. Выбирая в каждом неприводимом подпространстве базис Гельфанда - Цетлина, получаем другой ортонормированный базис в пространстве $H^{*} \otimes H$. Элементы матрицы перехода между этими двумя ортонормированными базисами называются коэффициентами Клебша - Гордана. Если $\gamma$ - вектор базиса Гельфанда - Цетлина $j$-го вхождения представления $V$, то справедливы следующие формулы:

$$
\gamma=\sum_{\alpha, \beta}\left\langle U^{+}, \alpha ; U, \beta \mid V, j, \gamma\right\rangle \alpha \otimes \beta, \quad \alpha \otimes \beta=\sum_{V, j, \gamma}\left\langle V, j, \gamma \mid U^{+}, \alpha ; U, \beta\right\rangle \gamma,
$$

где в угловых скобках стоят соответствующие коэффициенты Клебша - Гордана, а также формула

$$
\begin{equation*}
U_{\alpha \gamma}^{+}(g(\hat{x})) U_{\beta \varepsilon}(g(\hat{x}))=\Sigma\left\langle V, j, \zeta \mid U^{+}, \alpha ; U, \beta\right\rangle V_{\zeta \eta}(g(\hat{x}))\left\langle U^{+}, \gamma, U, \varepsilon \mid V, j, \eta\right\rangle . \tag{4}
\end{equation*}
$$

Формула (4) выражает тот факт, что матрица коэффициентов Клебша - Гордана приводит матрицу тензорного произведения $U^{+} \otimes U$ к прямой сумме матриц $V_{j}$. Суммирование в ней ведется по индексам $V, j$ и по векторам $\zeta, \eta$ из базиса Гельфанда - Цетлина представления $V_{j}$.

Теперь запишем аналогичное представление для матрицы Ф. Пусть индекс $e$ нумерует различные стационарные подгруппы $K_{e}$ точек из $S$. По условию 2 их конечное число и все они входят в цепочку (2). Пусть индекс $W$ пробегает все неприводимые унитарные представления группы $K$, входящие в тензорное произведение $U^{+} \otimes U$, пространства которых содержат ненулевые векторы, инвариантные относительно $K_{c}$. Пусть индекс $k$ нумерует вхождения представлений $W$ в $U^{+} \otimes U$. Пусть $S_{e}$ - множество точек из $S$, стационарная подгруппа которых совпадает с $K_{e}$. Тогда $k$-й экземпляр представления $W$ при сужении на подгруппу $K_{e}$ распадается в прямую сумму неприводимых представлений подгруппы $K_{e}$, среди которых имеется, вообще говоря, несколько тривиальных. Обозначим через $H_{W, k}$ пространство, в котором действуют эти тривиальные представления. Поскольку группа $K_{e}$ входит в цепочку (2), то пространство $H_{W, k}$ распадается в прямую сумму одномерных $K_{e}$-инвариантных подпространств, а их объединение совпадает с введенным выше пространством $H_{s}$ для $s \in S_{e}$. Конус неотрицательно определенных операторов пересекается с каждым одномерным $K_{e}$-инвариантным подпространством либо по лучу, либо только в начале координат. Зафиксируем в каждом таком подпространстве единичный вектор базиса Гельфанда - Цетлина $\varphi$, направив его по этому лучу.

Обозначим через $\Phi_{W k \varphi}^{e}$ компоненты матрицы $\Phi$ в построенном базисе. Имеем

$$
\begin{equation*}
\Phi_{\gamma \varepsilon}(\pi(\hat{x}))=\Sigma\left\langle W, k, \varphi \mid U^{+}, \gamma, U, \varepsilon\right\rangle \Phi_{W k \varphi}^{e}(\pi(\hat{x})) . \tag{5}
\end{equation*}
$$

Введем на множествах $S_{e}$ меры $v_{W k \varphi}^{e}$, положив

$$
\begin{equation*}
d v_{W k \varphi}^{e}(\pi(\hat{x}))=\Phi_{W k \varphi}^{e}(\pi(\hat{x})) d v(\pi(\hat{x})) . \tag{6}
\end{equation*}
$$

Поскольку компоненты $\Phi_{W k \varphi}^{e}$ положительны, то $v_{W k \varphi}^{e}$ являются положительными мерами.

Теперь нам понадобится еще одно свойство коэффициентов Клебша Гордана:

$$
\begin{equation*}
\sum_{\gamma, \varepsilon}\left\langle U^{+}, \gamma ; U, \varepsilon \mid V, j, \eta\right\rangle\left\langle W, k, \varphi \mid U^{+}, \gamma ; U, \varepsilon\right\rangle=\delta_{V W} \delta_{j k} \delta_{\eta \varphi} . \tag{7}
\end{equation*}
$$

Формула (7) выражает тот факт, что матрица коэффициентов Клебша - Гордана, будучи матрицей перехода между двумя ортонормированными базисами, унитарна.

Подставляя (4) и (5) в (3) и используя соотношения (6) и (7), получаем

$$
\begin{align*}
B_{\alpha \beta}(x, y) & =\int_{S_{e} \pi^{-1}(\pi(\hat{x}))} \int_{(x-y)} \sum\left\langle V, j, \zeta \mid U^{+}, \alpha ; U, \beta\right\rangle \times \\
& \times V_{\zeta \eta}(g(\hat{x})) d \mu_{\pi(\hat{x})}(g(\hat{x})) d v_{V j \eta}^{e}(\pi(\hat{x})) . \tag{8}
\end{align*}
$$

Суммирование во внешней сумме правой части формулы (8) ведется по индексам $e$, нумерующим типы орбит; $V$, нумерующему неприводимые представления группы $K$, входящие в тензорное произведение $U^{+} \otimes U$ и обладающие ненулевыми $K_{e}$-инвариантными векторами; $j$, нумерующему вхождения $V$ в $U^{+} \otimes U ; \eta$, нумерующему $K_{e}$-инвариантные базисные векторы представления $V_{j}$. Во внутренней сумме индекс суммирования $\zeta$ пробегает векторы базиса Гельфанда - Цетлина представления $V_{j}$.

Итак, доказана справедливость формулы, выражающей корреляционный оператор $B(x, y)$ через сравнительно простые объекты - матричные элементы и коэффициенты Клебша - Гордана группы $K$ и произвольные конечные меры на $S$. Однако формула (8) имеет другой существенный недостаток. Она не является спектральным разложением, к ней неприменима теорема Карунена, которая позволяет получить спектральное представление поля через стохастические интегралы по ортогональным случайным мерам.

С целью получения такого спектрального разложения поступим следующим образом. Обозначим через $\hat{K}_{e}$ множество всех неприводимых унитарных представлений группы $K$, содержащих тривиальное представление подгруппы $K_{e}$. Рассмотрим характер $\hat{x}(x)$ как непрерывную функцию на орбите $\pi^{-1}\left(\pi\left(\hat{x}_{0}\right)\right)$ фиксированной точки $\hat{x}_{0}$. Функция $\hat{x}(x)$ раскладывается в равномерно сходящийся ряд Фурье

$$
\begin{equation*}
\hat{x}(x)=\sum \operatorname{dim} W \int_{\pi^{-1}(\pi(\hat{x}))} \hat{x}(x) \overline{W_{\varphi \psi}(g(\hat{x}))} d \mu_{\pi(\hat{x})}(g(\hat{x})) W_{\varphi \psi}(g(\hat{x})) \tag{9}
\end{equation*}
$$

(см. [5], § 32, теорема 2), где суммирование производится по представлениям $W \in \hat{K}_{e}$, векторам базиса Гельфанда - Цетлина $\varphi$ представления $W$ и $K_{e}$ инвариантным векторам $\psi$ того же базиса; черта обозначает комплексное сопряжение.

В работе [6] были введены обобщенные функции Бесселя

$$
\begin{equation*}
J_{\varphi \psi}^{W}(\hat{x}, x)=\int_{K}(g \hat{x})(x) W_{\varphi \psi}(g(\hat{x})) d \mu(g) \tag{10}
\end{equation*}
$$

переходящие в обычные функции Бесселя в классическом случае $X=\mathbb{R}^{n}, K=$ $=O(n)$. При отображении $g \rightarrow g \hat{x}$ из $K$ в $\pi^{-1}(\pi(\hat{x}))$ интеграл в левой части формулы (10) переходит в соответствующий интеграл в левой части (9). Поэтому справедливы формулы

$$
\begin{gather*}
\hat{x}(x)=\sum_{W, \varphi, \psi} \operatorname{dim} W J_{\varphi \psi}^{W}(\hat{x}, x) W_{\varphi \psi}(g(\hat{x}))  \tag{11}\\
\overline{\hat{x}(y)}=\sum_{W^{\prime}, \varphi^{\prime}, \psi^{\prime}} \operatorname{dim} W^{\prime} \overline{J_{\varphi^{\prime} \psi^{\prime}}^{W^{\prime}}(\hat{x}, y)} \overline{W_{\varphi^{\prime} \psi^{\prime}}^{\prime}(g(\hat{x}))} \tag{12}
\end{gather*}
$$

Прежде чем подставлять формулы (11) и (12) в (8), сделаем следующее замечание. В процессе упрощения полученного при этом выражения необходимо будет вычислить интеграл

$$
\int_{\pi^{-1}(\pi(\hat{x}))} W_{\varphi \psi}(g(\hat{x})) \overline{W_{\varphi \psi^{\prime}}^{\prime}(g(\hat{x}))} V_{\zeta \eta}(g(\hat{x})) d \mu_{\pi(\hat{x})}(g(\hat{x}))
$$

Это вычисление производится следующим образом. Применяя формулу (4),

имеем

$$
W_{\varphi \psi}(g(\hat{x})) V_{\zeta \eta}(g(\hat{x}))=\sum\langle Y, m, \mu \mid W, \varphi ; V, \zeta\rangle Y_{\mu v}(g(\hat{x}))\langle W, \psi ; V, \eta \mid Y, m, v\rangle .
$$

Подставляя последнюю формулу в вычисляемый интеграл и учитывая, что по теореме Петера - Вейля [5]

$$
\int_{\pi^{-1}(\pi(\hat{x}))} Y_{\mu \mathrm{v}}(g(\hat{x})) \overline{W_{\varphi^{\prime} \psi^{\prime}}^{\prime}(g(\hat{x}))} d \mu_{\pi(\hat{x})}(g(\hat{x}))=\delta_{Y W^{\prime}}\left(\operatorname{dim} W^{\prime}\right)^{-1},
$$

получаем, что значение интеграла равно

$$
\begin{gather*}
\quad \int_{\pi^{-1}(\pi(\hat{x}))} W_{\varphi \psi}(g(\hat{x})) \overline{W_{\varphi^{\prime} \psi^{\prime}}^{\prime}(g(\hat{x}))} V_{\zeta \eta}(g(\hat{x})) d \mu_{\pi(\hat{x})}(g(\hat{x}))= \\
=\left(\operatorname{dim} W^{\prime}\right)^{-1} \sum\left\langle W^{\prime}, m, \varphi^{\prime} \mid W, \varphi ; V, \zeta\right\rangle\left\langle W, \psi ; U, \eta \mid W^{\prime}, m, \psi^{\prime}\right\rangle, \tag{13}
\end{gather*}
$$

где суммирование производится по индексу $m$, нумерующему вхождения представления $W^{\prime}$ в тензорное произведение $W \otimes V$. Итак, подставляя (11) и (12) в (8) и учитывая (13), получаем

$$
\begin{equation*}
B_{\alpha \beta}(x, y)=\sum b_{\alpha \beta W W^{\prime} \phi \varphi^{\prime} \psi \psi^{\prime}}^{e V j} \int_{S_{e}} J_{\varphi \psi}^{W}(s, x) \overline{J_{\varphi^{\prime} \psi^{\prime}}^{W^{\prime}}(s, y)} d v_{V j \eta}^{e}(s), \tag{14}
\end{equation*}
$$

где

$$
\begin{align*}
b_{\alpha \beta W W^{\prime} \varphi \varphi^{\prime} \psi \psi^{\prime}}^{e V \eta} & =\operatorname{dim} W \sum\left\langle V, j, \zeta \mid U^{+}, \alpha ; U, \beta\right\rangle\left\langle W^{\prime}, m, \varphi^{\prime} \mid W, \varphi ; V, \zeta\right\rangle \times \\
& \times\left\langle W, \psi, U, \eta \mid W^{\prime}, m, \psi^{\prime}\right\rangle . \tag{15}
\end{align*}
$$

Суммирование по формуле (15) ведется по индексам $m, \zeta$, нумерующим векторы базиса Гельфанда - Цетлина $m$-го вхождения представления $W^{\prime}$ в тензорное произведение $W \otimes V$.

Применяя к (14) теорему Карунена, имеем

$$
\begin{equation*}
\xi_{\alpha}(x)=\sum \int_{S_{e}} J_{\varphi \psi}^{W}(s x) d Z_{\alpha W \varphi \psi}^{e V / \eta^{e}}(s) \tag{16}
\end{equation*}
$$

Здесь $Z_{\alpha W \varphi \psi}^{e V j \eta}(\cdot)$ - стохастические меры на $S_{e}$, удовлетворяющие условиям

$$
\begin{equation*}
M Z_{\alpha W \varphi \psi}^{e V V_{\eta}}\left(A_{1}\right)=0, \tag{17}
\end{equation*}
$$


Теорема. Пусть выполнены условия 1 и 2 . Тогда корреляционный оператор многомерного ковариантного случайного поля задается формулами (14) и (15). Само поле представляется формулами (16) - (18).

Замечание 2. Условие 2 имеет технический характер. Если бы оно не выполнялось, то пришлось бы вычислять компоненты матрицы $B(x, y)$ в различных базисах при разных $S_{e}$, а затем приводить их к одному базису. В результате формулы приобрели бы более сложный характер.

Пример 1. Пусть $X=\mathbb{Z}^{n}$ - решетка точек в $\mathbb{R}^{n}$ с целочисленными координатами, $K$ - группа автоморфизмов $\mathbb{Z}^{n}$, порожденная перестановками осей координат и зеркальными отражениями относительно координатных гиперплоскостей, $U$ - тривиальное одномерное представление группы $K$ в $\mathbb{C}^{1}$. Формулы для корреляционного оператора и самого поля приведены в [7].

Пример 2. Пусть $X=\mathbb{Z}^{3}, K=S_{3}$ - группа перестановок трех координатных осей. Она имеет три неприводимых унитарных представления, которые в
[8] обозначаются $\left(1^{3}\right),(21),(3)$. В качестве представления $U$ выберем представление (21), имеющее размерность 2 . Измеримое сечение $S^{\prime}$ на торе $T^{3}$ имеет вид $S^{\prime}=\left\{0 \leq \hat{x}_{1} \leq \hat{x}_{2} \leq \hat{x}_{3}<1\right\}$. Для простоты ограничимся полями, спектральная мера которых сосредоточена на множестве $S=\left\{0<\hat{x}_{1}<\hat{x}_{2}<\right.$ $\left.<\hat{x}_{3}<1\right\}$.У всех точек этого множества стационарная подгруппа тривиальна, поэтому цепочка $S_{3} \supset S_{2} \supset\{e\}$ удовлетворяет условию 2 . Контраградиентное представление $U^{+}$в рассматриваемом случае совпадает с $U$, тензорное произведение $U^{+} \otimes U$ имеет вид [8] $(21) \otimes(21)=(3) \oplus(21) \oplus\left(1^{3}\right)$, а базис Гельфанда - Цетлина в $H$ обозначается символами Яманучи [211] и [121].

Так как стационарная подгруппа любой точки тривиальна, то индекс $W$ будет пробегать все три неприводимых унитарных представления $S_{3}$. Обобщенные функции Бесселя имеют вид

$$
J_{\varphi \psi}^{W}(s, x)=\frac{1}{6} \sum_{g \in S_{3}} e^{2 \pi i(x, g s)} W_{\varphi \psi}(g) .
$$

Используя явный вид матричных элементов и коэффициентов Клебша - Гордана группы $S_{3}$, приведенной в [8], получаем

$$
\begin{aligned}
B_{[121][121]}(x, y) & =(6 \sqrt{2})^{-1} \int_{s} \sum_{g} e^{2 \pi i(g s, x-y)} d v_{(3)}(s)+ \\
& +(6 \sqrt{2})^{-1} \int_{s} \sum_{g} e^{2 \pi i(g s, x-y)}(-1)^{I_{33}(g)} d v_{\left(1^{3}\right)}(s), \\
B_{[121][211]}(x, y) & =(6 \sqrt{2})^{-1} \int_{s} \sum_{g} e^{2 \pi i(g s, x-y)}(-1)^{I_{A_{3}}(g)} d v_{\left(1^{3}\right)}(s)- \\
& -(6 \sqrt{2})^{-1} \int_{s} \sum_{g} e^{2 \pi i(g s, x-y)} d v_{(3)}(s),
\end{aligned}
$$

$$
B_{[211][211]}(x, y)=(6 \sqrt{2})^{-1} \int_{s} \sum_{g} e^{2 \pi i(g s, x-y)} \varphi(g) d v(s),
$$

где $A_{3}$ - подгруппа четных перестановок, а функция $\varphi$ задается таблицей

| $g$ | $e$ | $(12)$ | $(23)$ | $(13)$ | $(312)$ | $(231)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\varphi(g)$ | 1 | 1 | $\frac{\sqrt{3}-1}{2}$ | $-\frac{\sqrt{3}+1}{2}$ | $-\frac{\sqrt{3}+1}{2}$ | $\frac{\sqrt{3}-1}{2}$ |

1. Маляренко А. А. Многомерные ковариаитные случайные поля на коммутативных топологических группах // Теория вероятностей и мат. статистика. - 1989. - № 41. - С. 43 - 50 .
2. Яелом А. М. Некоторые классы случайных полей в $n$-мерном пространстве, родственные стационарным случайным процессам // Теория вероятностей и ее применения. - 1957. - 2, № 3. - C. 292-338.
3. Yaglom A. M. Second-order homogeneous random fields // Proc. Berkeley Symp. Math. Statist. and Probab. - 1961. -2. - P. 593-622.
4. Маляренко А. А. Спектральное разложение многомерных однородных случайных полей, изотропных по части переменных // Теория вероятностей и мат. статистика. - 1985. - № 32 . - C. 66-72.
5. Желобенко Д. П. Компактные группы Ли и их представления. - М.: Наука, 1970. - 664 с.
6. Gross K. I., Kunze R. A. Bessel functions and representation theory // J. Funct. Anal. - 1976. - 22, N 2. - P. 73-105.
7. Antonin Otahal. Isotropy of stationary random fields on lattice // Kybernetica. - 1986. - 22, N 3. P. 256-267.
8. Халсрмеш М. Теория групп и ее применения к физическим проблемам.- М.: Мир, 1966.587 c.

Получено 09.01.91

