В. А. Онищук, асп. (Ин-т математки АН Украины, Киев),

О ЛОКАЛЬНО НИЛЬПОТЕНТНЫХ ГРУППАХ С ЦЕНТРАЛИЗАТОРОМ КОНЕЧНОГО РАНГА

Изучаются локально нильпотентные группы, в которых централизатор некоторой конечно порождённой подгруппы имеет конечный ранг. Доказано, что если G - такая группа и F - её конечно порождённая подгруппа с централизатором $C_{G}(F)$ конечного ранга, то централизатор образа подгруппы F в фактор-группе $G / t(G)$ по её периодической части $t(G)$ также имеет конечный ранг. Кроме того, показано, что группа G гиперцентральна в случаях, когда подгруппа F циклическая и либо G - группа без кручения, либо все силовские подгруппы из периодической части централизатора $C_{G}(F)$ конечны.

Вивчаються локально нільпотентні групи, в яких централізатор деякої скінченно породженої підгрупи має скінченний ранг. Доведено, що коли G - така група і F - ії скінченно породжена підгрупа з централізатором $C_{G}(F)$ скінченного рангу, то централізатор образу підгрупи F у фактор-групі $G / t(G)$ по ії періодичній частині $t(G)$ також має скінченний ранг. Крім того, показано, що група G гіперцентральна у випадках, коли підгрупа F циклічна і або G - група без скруту, або всі силовські підгрупи з періодичної частини централізатора $C_{G}(F)$ скінченні.

Одним из важнейших условий конечности в теории групп является условие конечности специального ранга группы, введённого А.И.Мальцевым [1] и состоящего в следующем. Группа G имеет конечный специальний ранг, если r является наименьшим натуральным числом с тем свойством, что всякая конечно порождённая подгруппа группы G может быть порождена не более чем r элементами. Если такого натурального числа не существует, то специальный ранг группы считается бесконечным. Специальный ранг группы G обозначается ниже через $r(G)$ и называется просто рангом группы.

В работе [2] показано, что если локально нильпотентная группа G содержит такую конечно порождённую подгруппу F, что централизатор $C_{G}(F)$ подгруппы F в группе G / Z имеет конечный ранг, то центр $Z=Z(G)$ этой группы отличен от единицы. Более того, централизатор $C_{G / Z}(F Z / Z)$ подгруппы F в фактор-группе G / Z имеет конечный ранг. В частности, в группе G можно построить возрастающую цепь гиперцентров с натуральными номерами $1=$ $=Z_{0}<Z_{1}<Z_{2}<\ldots<Z_{n}<\ldots$, где $Z_{n} \neq Z_{n+1}$, если $Z_{n} \neq G$.

В настоящей работе продолжается изучение локально нильпотентных групп, в которых централизатор некоторой конечно порождённой подгруппы имеет конечный ранг. Будет показано, что централизатор $C_{G / t(G)}(F t(G) / t(G))$ образа подгруппы F в фактор-группе $G / t(G)$ группы G по её периодической части $t(G)$ также имеет конечный ранг (теорема 1). Если F - циклическая подгруппа и G - группа без кручения, то в этом случае ряд гиперцентров можно продолжить до всей группы G, т.е. группа G будет гиперцентральной (теорема 2). Этот же результат справедлив и в случае, когда G - произвольная локально нильпотентная группа и все силовские подгруппы из периодической части $t\left(C_{G}(F)\right)$ централизатора $C_{G}(F)$ конечны (теорема 3). Некоторые результаты опубликованы без доказательств в работе [3].

Доказательству теоремы 1 предпошлём некоторые вспомогательные предложения, представляющие и самостоятельный интерес.

1. Пусть π - некоторое множество простых чисел и π^{\prime} - множество тех простых делителей порядков элементов группы G, которые не содержатся в множестве π. Периодическая группа G будет называться π-группой, если

все простые делители порядка любого элемента группы G принадлежат множеству π. Ниже множество всех простых делителей порядков элементов группы G будем обозначать через $\pi(G)$. Периодическая группа G называется π^{\prime}-группой, если пересечение $\pi(G) \cap \pi$ пусто.

Лемма 1. Пусть G - конечно порожденная нильпотентная группа и $К$ _ некоторая ее конечная подгруппа. Тогда в группе G суцествует такая характеристическая подгруппа S, которая удовлетворяет следуюшим условиям:

1) пересечение $S \cap K$ единичное;
2) индекс $|G: S|$ подгруппь S в группе G конечен;
3) $\pi(G / S)=\pi(K)$.

Доказательство. Так как конечно порожденная нильпотентная группа финитно аппроксимируема $[4$, с.164], то группа G обладает множеством подгрупп $G_{1}, G_{2}, \ldots, G_{k}, \ldots$ конечного индекса в G, пересечение которых единично. В силу результата Б.Неймана [5] каждая подгруппа G_{i} содержит подгруппу N_{i}, которая характеристична и имеет конечный индекс в группе G. Ясно, что пересечение подгрупп N_{i} единично и потому для некоторого индекса i пересечение $N_{i} \cap K=1$. Пусть S - максимальная среди характеристических подгрупп конечного индекса группы G со свойством $S \cap K=1$. Тогда фактор-группа G / S конечна и каждая ее неединичная характеристическая подгруппа имеет неединичное пересечение с подгруппой $K S / S$. В частности, каждая силовская подгруппа из фактор-группы G / S имеет с $K S / S$ нетривиальное пересечение. Поэтому $\pi(G / S)=\pi(K S / S)=\pi(K)$, поскольку $K S / S \simeq K$. Лемма доказана.

Лемма 2. Пусть G - локально нильпотентная группа, F - некоторая ее конечно порожденная подгруппа и H - подгруппа, удовлетворяющая условию

$$
[H, F] \leq t(H)
$$

где $t(H)$ - периодическая часть группы H - является π-группой. Тогда если $К$ - нормальный делитель подгруппы H и фактор-группа H / K является π^{\prime}-группой, то

$$
H=K C_{H}(F)
$$

где $C_{H}(F)$ - централизатор подгруппы F в группе H.
Доказательство. 1) Рассмотрим сначала случай, когда подгруппа H конечно порождена. Тогда H нильпотентна, и ее периодическая часть $t(H)$ конечна. В силу леммы 1 в группе H существует такая характеристическая подгруппа S, что $S \cap t(H)=1$ и фактор-группа H / S является π-группой. Так как согласно условию леммы фактор-группа $H / K-\pi^{\prime}$-группа, то индексы подгрупп S и K взаимно просты. Легко видеть, что тогда $H=S K$. Ввиду того, что $[S, F] \leq S \cap t(H)=1$, получаем, что подгруппа S содержится в централизаторе $C_{H}(F)$. Отсюда следует нужное равенство $H=K C_{H}(F)$.
2) Рассмотрим теперь общий случай. В силу условия $[H, F] \leq t(H)$ подгруппа F нормализует H. Пусть H_{i} - произвольная конечно порожденная подгруппа из H, нормализуемая подгруппой F. Так как $\left[H_{i}, F\right] \leq t(H) \cap H_{i}=$ $=t\left(H_{i}\right)$, то по условию леммы $t\left(H_{i}\right)$ - конечная π-группа. В силу изоморфизма $H_{i} / H_{i} \cap K \approx H_{i} K / K \leq H / K$ фактор-группа $H_{i} / H_{i} \cap K$ является π^{\prime} группой. Тогда в силу изложенного в п. 1 получаем

$$
H_{i}=\left(H_{i} \cap K\right) C_{H_{i}}(F) .
$$

Покажем, что отсюда следует искомое равенство $H=K C_{H}(F)$. Так как $H=\bigcup_{i} H_{i}$, то для каждого элемента $h \in H$ существует такая подгруппа H_{i}, что $h \in H_{i}$. Как показано выше, элемент h представляется в виде $a x$, где $a \in$ $\in H_{i} \cap K \leq K$ и $x \in C_{H_{i}}(F) \leq C_{H}(F)$. Поэтому элемент $h \in K C_{H}(F)$, и следовательно, $H=K C_{H}(F)$. Лемма доказана.

Лемма 3. Пусть G - конечно порожденная нильпотентная группа и H некоторая ее подгруппа. Если простое число q не делит порядок периодической части группы G, то ранг фактор-группы $H / H^{q} H^{\prime}$ не превышает ранга фактор-группы $G / G^{q} G^{\prime}$, где $G^{\prime}=[G, G]$ - коммутант группы G.

Доказательство. Известно, что центр Z бесконечной конечно порожденной группы G содержит элементы бесконечного порядка. Возьмем элемент z бесконечного порядка, принадлежащий центру Z группы G, и положим $\left\langle z_{1}\right\rangle=H \cap\langle z\rangle$. Докажем лемму индукцией по показателю минимальности $m(G)$ группы G, введенному Д.И.Зайцевым в работе [6]. Рассмотрим два возможных случая.

1) Пусть $\left\langle z_{1}\right\rangle=H \cap\langle z\rangle=1$. Введем обозначения $\bar{G}=G /\langle z\rangle$ и $\bar{H}=$ $=H\langle z\rangle \mid\langle z\rangle$. В силу теоремы Д.И.Зайцева [6] $m(\bar{G})<m(G)$. Тогда по индуктивному предположению следует, что $r\left(\bar{H} / \bar{H}^{q} \bar{H}^{\prime}\right) \leq r\left(\bar{G} / \bar{G}^{q} \bar{G}^{\prime}\right)$. В силу изоморфизма

$$
\bar{H} / \bar{H}^{q} \bar{H}^{\prime} \approx H\langle z\rangle / H^{q} H^{\prime}\langle z\rangle \approx H / H^{q} H^{\prime}(H \cap\langle z\rangle)
$$

и того, что $H \cap\langle z\rangle=1$, получаем изоморфизм $\bar{H} / \bar{H}^{q} \bar{H}^{\prime} \approx H / H^{q} H^{\prime}$. В силу изоморфизма $\bar{G} / \bar{G}^{q} \bar{G}^{\prime} \approx G / G^{q} G^{\prime}\left\langle z>\right.$ фактор-группа $\bar{G} / \bar{G}^{q} \bar{G}^{\prime}$ является гомоморфным образом фактор-группы $G / G^{q} G^{\prime}$. Поэтому $r\left(\bar{G} / \bar{G}^{q} \bar{G}^{\prime}\right) \leq$ $\leq r\left(G / G^{q} G^{\prime}\right)$. Таким образом, имеем нужное неравенство $r\left(H / H^{q} H^{\prime}\right) \leq$ $\leq r\left(G / G^{q} G^{\prime}\right)$.
2) Пусть теперь $\left\langle z_{1}\right\rangle=H \cap\langle z\rangle \neq 1$. В этом случае $\left\langle z_{1}\right\rangle-$ бесконечная циклическая подгруппа группы H. Так как фактор-группа $H / H^{q} H^{\prime}$ конечна, то некоторая степень элемента z принадлежит $H^{q} H^{\prime}$. Пусть $y \in z_{1}^{n} \in H^{q} H^{\prime}$. Введем обозначения $\bar{G}=G /\langle y\rangle$ и $\bar{H}=H /\langle y\rangle$. В силу теоремы Д.И.Зайцева [6] $m(\bar{G})<m(G)$. Тогда по предположению индукции имеем $r\left(\bar{H} / \bar{H}^{q} \bar{H}^{\prime}\right) \leq$ $\leq r\left(\bar{G} / \bar{G}^{q} \bar{G}^{\prime}\right)$. Так как $y \in H^{q} H^{\prime}$, то имеют место изоморфизмы

$$
\bar{H} / \bar{H}^{q} \bar{H}^{\prime} \approx H / H^{q} H^{\prime}, \bar{G} / \bar{G}^{q} \bar{G}^{\prime} \simeq G / G^{q} G^{\prime}
$$

Таким образом, и в этом случае $r\left(H / H^{q} H^{\prime}\right) \leq r\left(G / G^{q} G^{\prime}\right)$. Лемма доказана.
Теорема 1. Пусть G - локально нильпотентная группа с периодической частью $T=t(G)$ и F - некоторая ее конечно порожденная подгруппа. Если ранг централизатора $C_{G}(F)$ подгруппы F в группе G конечен, то ранг централизатора $C_{G / T}(F T / T)$ образа подгрупnы F в фактор-груnпе G / T также конечен.

Доказательство. Предположим, что централизатор $C_{G / T}(F T / T)$ группа бесконечного ранга. В силу теоремы А.И. Мальцева [7] в группе $C_{G / T}(F T / T)$ существует абелева подгруппа A / T бесконечного ранга. Ясно,

что $[A, F] \leq A \cap t(G)=t(A)$.
Пусть $r\left(C_{G}(F)\right)=r$. В фактор-группе $\bar{A}=A / T$ выберем конечно порождённую абелеву подгруппу \bar{A}_{0} с $r+1$ образующими:

$$
\bar{A}_{0}=\left\langle\bar{a}_{1}\right\rangle \times\left\langle\bar{a}_{2}\right\rangle \times \cdots \times\left\langle\bar{a}_{r}\right\rangle \times\left\langle\bar{a}_{r+1}\right\rangle
$$

Пустъ $B_{0}=\operatorname{rp}\left(a_{1}, a_{2}, \ldots, a_{r}, a_{r+1}\right)$ и $H=\operatorname{rp}\left(B_{0}, F\right)$. Тогда $[H, F] \leq t(H)$ и, очевидно, периодическая часть $t(H)$ группы H является конечной π-группой для некоторого множества простых чисел π. Если $K=H^{q} H^{\prime}$, где q - простое число, которое не делит порядок $t(H)$, то K-нормальный делитель в группе H и фактор-группа $H / K-\pi^{\prime}$-группа. В силу леммы 2 получаем $H=K C_{H}(F)$. Ввиду этого равенства имеем $r\left(H / H^{q} H^{\prime}\right)=r(H / K) \leq r\left(C_{H}(F)\right)=r$, т.е. $r\left(H / H^{q} H^{\prime}\right) \leq r$. С другой стороны, так как $B_{0}^{\prime} \leq t(G)$, фактор-группа B_{0} / B_{0}^{\prime} - группа без кручения. Поэтому $r\left(B_{0} / B_{0}^{q} B_{0}^{\prime}\right)=r+1$. В силу леммы 3 имеем неравенство

$$
r+1=r\left(B_{0} / B_{0}^{q} B_{0}^{\prime}\right)<r\left(H / H^{q} H^{\prime}\right) \leq r
$$

Полученное противоречие доказывает теорему.
2. В работе [2] доказано, что если локально нильпотентная группа G содержит такую конечно порожденную подгруппу F, что централизатор $C_{G}(F)$ имеет конечный ранг, то централизатор $C_{G / Z}(F Z / Z)$ образа подгруппы F в фактор-группе G / Z также имеет конечный ранг. В случае, когда $F=\langle f\rangle$ — циклическая подгруппа группы G, справедливо следующее утверждение.

Лемма 4. Пусть G - локально нильпотентная группа без кручения и f некоторый ее элемент. Если ранг централизатора $C_{G}(f)$ равен r, то ранг централизатора $C_{G / Z}(f Z)$ образа элемента f в фактор-группе G / Z не превышает r.

Доказательство. Пусть H - такая подгруппа группы G, что $H=$ $=\{g \mid[g, f] \in Z, g \in G\}$. Тогда фактор-группа $H / Z=C_{G / Z}(f Z)$. Для всякого h є̀ H отображение $\varphi: h \mapsto[h, f]$ является гомоморфизмом подгруппы H в группу Z, причем ядро этого гомоморфизма совпадает с централизатором $C_{H}(f)$. Очевидно, $C_{G}(f)=C_{H}(f)$. По теореме о гомоморфизме фактор-группа $H / C_{G}(F)$ изоморфна некоторой подгруппе из группы Z. Так как центр Z группы G содержится в централизаторе $C_{G}(f)$, то $r(Z) \leq r\left(C_{G}(f)\right)=r$, и если $r(Z)=s \leq r$, то $r\left(H / C_{G}(f)\right) \leq s$. Согласно теореме 2.25 [8], фактор-группы $H / C_{G}(f)$ и H / Z являются группами без кручения, и следовательно, справедливы равенства $r(H)=r\left(C_{G}(f)\right)+r\left(H / C_{G}(f)\right)$ и $r(H)=r(Z)+r(H / Z)$. Из этих равенств получаем

$$
r(Z)+r(H / Z)=r\left(C_{G}(f)\right)+r\left(H / C_{G}(f)\right)
$$

Ввиду того что $r\left(C_{G}(f)\right)=r$ и $r\left(H / C_{G}(f)\right) \leq s$, из последнего равенства имеем $s+r(H / Z) \leq r+s$ или $r(H / Z) \leq r$. Таким образом, $r\left(C_{G / Z}(f Z)\right) \leq r$, и лемма доказана.

Используя индукцию по длине верхнего центрального ряда группы G и доказательство леммы 4, легко доказать следующее утверждение.

Следствие 1. Пусть G - локально нильпотентная группа без кручения и f - некоторый ее элемент. Если ранг централизатора $C_{G}(f)$ равен r, то ранг

централизатора $C_{G / Z_{k}}\left(f Z_{k}\right)$ образа элемента f в фактор-группе G / Z_{k}, где Z_{k} - некоторый член верхнего центрального ряда группы G с натуральным номером k, не превышает r.

В частности, ранги всех факторов верхнего центрального ряда группы G с натуральными номерами не превышают числа r.

Теорема 2. Если в локально нильпотентной группе G без кручения централизатор $C_{G}(f)$ некоторого элемента f в группе G имеет конечный ранг, то̀ она гиперцентральна.

Доказательство. В силу результатов работы [2] в группе G можно построить возрастающую цепь гиперцентров с натуральными номерами $1=$ $=Z_{0}<Z_{1}<Z_{2}<\ldots<Z_{n}<\ldots$. Если $r\left(C_{G}\left(f^{*}\right)\right)=r$, то из следствия 1 вытекает, что ранги всех факторов Z_{k} / Z_{k-1} этой цепи ограничены числом r. Пусть $Z_{\omega}=\bigcup_{k=1}^{\infty} Z_{k}$; покажем, что $r\left(C_{G / Z_{\omega}}\left(f Z_{\omega}\right)\right) \leq r$.

Если H - такая подгруппа группы G, что

$$
H=\left\{g \mid[g, f] \in Z_{\omega}, g \in G\right\}
$$

то фактор-группа $H / Z_{\omega}=C_{G / Z_{\omega}}\left(f Z_{\omega}\right)$. Нужно доказать, что ранг факторгруппы H / Z_{ω} не превышает r. Действительно, пусть $X=\operatorname{rp}\left(g_{1}, g_{2}, \ldots, g_{t}, f\right)$ - произвольная конечно порожденная подгруппа из группы H, содержащая элемент f. Так как $\left[g_{i}, f\right] \in Z_{\omega}$ и $Z_{\omega}=\bigcup_{k=1}^{\infty} Z_{k}$, то существует такой номер k, что $\left[g_{i}, f\right] \in Z_{k}$ для всех $i, i=1,2, \ldots, t$. Тогда $X \cap Z_{\omega}=X \cap Z_{k}$ и $[X, f] \leq X \cap Z_{\omega}=$ $=X \cap Z_{k}$. Отсюда $X Z_{k} / Z_{k} \leq C_{G / Z_{k}}\left(f Z_{k}\right)$. Согласно следствию $1 r\left(C_{G / Z_{k}}\left(f Z_{k}\right)\right) \leq$ $\leq r$, а значит, $r\left(X Z_{k} / Z_{k}\right) \leq r$. Но в силу изоморфизмов $X Z_{\omega} / Z_{\omega} \simeq X / X \cap Z_{\omega}=$ $=X / X \cap Z_{k} \simeq X Z_{k} / Z_{k}$ получаем, что $r\left(X Z_{\omega} / Z_{\omega}\right) \leq r$. Так как X - произвольная конечно порождённая подгруппа из H, то отсюда следует $r\left(H / Z_{\omega}\right) \leq r$, т.е. $r\left(C_{G / Z_{\omega}}\left(f Z_{\omega}\right)\right) \leq r$. По теореме 2 из работы [2] это означает, что центр факторгруппы G / Z_{ω} отличен от единицы, т.е. $Z_{\omega+1}>Z_{\omega}$. Продолжая эти рассуждения и применяя к ним трансфинитную индукцию, получаем, что группа G гиперцентральна. Теорема доказана.
3. В данном пункте рассматривается вопрос о гиперцентральности группы G в случае, когда G - произвольная локально нильпотентная группа. Доказательству теоремы 3 - основного результата настоящей работы - предпошлем несколько вспомогательных предложений.

Лемма 5. Пусть G - локально нильпотентная группа вида $G=P\langle f\rangle$, где P - нормальная р-подгруппа, $\langle f\rangle$ - циклическая подгруппа. Если централизатор $C_{P}(f)$ элемента f в группе P является конечной группой, то фактор-группа $P /[P, f]$ также является конечной группой и справедливо неравенство

$$
|P /[P, f]| \leq\left|C_{P}(f)\right| .
$$

Доказательство. 1) Предположим, что P - конечная подгруппа, и докажем лемму индукцией по порядку подгруппы P. Так как $[P, f]$ - нормальная подгруппа группы G, то в этом случае $[P, f] \cap Z(G) \neq 1$. Пусть $z-$ элемент порядка p из пересечения $[P, f] \cap Z(G)$. Введем обозначения $\bar{P}=$ $=P /\langle z\rangle$ и $\bar{f}=f\langle z\rangle$. В силу очевидного неравенства $|\bar{P}|<|P|$ и по предположению индукции имеем

$$
|\bar{P} /| \bar{P}, \bar{f})\left|\leq\left|C_{\bar{P}}(\bar{f})\right| .\right.
$$

Так как $\langle z\rangle \leq[P, f]$, то в силу изоморфизма $\bar{P} /[\bar{P}, \bar{f}] \approx P /[P, f]\langle z\rangle$ получаем, что $\bar{P} /[\bar{P}, \bar{f}] \simeq P /[P, f]$.

Пусть $\bar{H}=C_{\bar{P}}(\bar{f})$. Ясно, что $[H, f] \leq\langle z\rangle$. Если $[H, f]=1$, то $H=C_{P}(f)$, и из того, что $|\bar{H}|<|H|$, следует $|\bar{H}|<\left|C_{P}(f)\right|$. Таким образом, $|P /[P, f]|<$ $<\left|C_{P}(f)\right|$.

Если $[H, f]=\langle z\rangle$, то $H / C_{H}(f) \simeq[H, f]$. Тогда

$$
|\bar{H}|=|H /\langle z\rangle|=|H /[H, f]|=\left|C_{H}(f)\right| \leq\left|C_{P}(f)\right| .
$$

Следовательно, в этом случае получаем искомое неравенство

$$
|P /[P, f]| \leq\left|C_{P}(f)\right| .
$$

2) Пусть теперь P - бесконечная подгруппа и $K /[P, f]$ - произвольная конечная подгруппа в фактор-группе $P /[P, f]$. Тогда $K=[P, f] S$ для некоторой конечной подгруппы S из P. Подгруппа $A=\mathrm{rp}(S, f)$ имеет вид $R\langle f\rangle$, где $R=P \cap A$ - конечная подгруппа группы P, содержащая подгруппу S и содержащаяся в подгруппе K. Следовательно, $K=[P, f] R$ и $[R, f] \leq R \cap[P, f]$. В силу доказанного выше для случая 1 имеем неравенство $|R /[R, f]| \leq\left|C_{R}(f)\right| \leq$ $\leq\left|C_{P}(f)\right|$. Поэтому $|R / R \cap[P, f]| \leq\left|C_{P}(f)\right|$. В силу изоморфизма $R / R \cap[P, f] \simeq$ $\approx R[P, f] /[P, f]=K /[P, f]$ получаем $|K /[P, f]| \leq\left|C_{P}(f)\right|$. Таким образом, в силу произвольности выбора подгруппы $K /[P, f]$, имеем неравенство $|P /[P, f]| \leq$ $\leq\left|C_{P}(f)\right|$. Лемма доказана.

Лемма 6. Пусть G - локально нильпотентная группа, $\langle f\rangle$ - некоторая ее циклическая подгруппа и P - силовская р-подгруппа в периодической части $t(G)$. Если централизатор $C_{P}(f)$ элемента f в группе P является конечной группой, то пересечение подгруппы P с центром $Z=Z(G)$ группы G отлично от единицы.

Доказательство. Пусть $\left\{G_{\alpha}, \alpha \in I\right\}$ - локальная система конечно порожденных подгрупп группы G, содержащих подгруппу, порожденную неединичным элементом $x \in P$ и элементом f. Положим $P_{\alpha}=P \cap G_{\alpha}$ и возьмем элемент x_{α} порядка p из пересечения $P_{\alpha} \cap Z\left(G_{\alpha}\right)$. Так как подгруппа $H=$ $=г р\left(x_{\alpha}, \alpha \in I\right)$ содержится в централизаторе $C_{P}(f)$, то H - конечная группа.

Зафиксируем индекс $\alpha \in I$ и рассмотрим подмножество индексов $J \subset I$ таких, что $G_{\alpha} \leq G_{\beta}, \beta \in J$. Заметим, что подмножеству индексов J соответствует множество подгрупп $\left\{G_{\beta}, \beta \in J\right\}$, которое также будет локальной системой подгрупп группы G. Множество индексов J разобьем на конечное число подмножеств $J=J_{1} \cup J_{2} \cup \ldots \cup J_{n}$ по принципу: $\gamma, \delta \in J_{s}$ тогда и только тогда, когда $x_{\gamma}=x_{\delta}$. В силу утверждения работы [2] получаем, что хотя бы одному из подмножеств индексов J_{s} (например, J_{1}) соответствует множество подгрупп $\left\{G_{\delta}, \delta \in J_{1}\right\}$, которое будет локальной системой подгрупп группы G. Общее значение совпадающих членов обозначим через $y, y=x_{\gamma}=x_{\delta}=\ldots$. Тогда $y \in$ $\in Z\left(G_{\delta}\right)$ для всех $\delta \in J_{1}$ и, следовательно, $y \in Z(G)$. Таким образом, пересе-

чение $P \cap Z(G)$ неединично. Лемма доказана.

Теорема 3. Пусть G - локально нильпотентная группа и f - некоторый ее элемент. Если централизатор $C_{G}(f)$ элемента f в группе G имеет конечный ранг и все силовские подгруппы периодической части $t\left(C_{G}(f)\right)$ централизатора $C_{G}(f)$ конечны, то G-гиперцентральная группа.

Доказательство. Пусть P - силовская p-подгруппа периодической части $t(G)$ группы G и X - последний член верхнего центрального ряда группы G. Покажем сначала, что $P<X$. Так как пересечение $P \cap X$ - нормальная подгруппа в G, то рассмотрим фактор-группы $\bar{G}=G / P \cap X$ и $\bar{P}=P / P \cap X$. Тогда \bar{P} - силовская p-подгруппа в $t(\bar{G})$. Докажем, что справедливо неравенство $\left|C_{\bar{P}}(\bar{f})\right| \leq\left|C_{P}(f)\right|$. Действительно, пусть $\bar{H}=C_{\bar{P}}(\bar{f})$. Тогда $[H, f] \leq$ $\leq P \cap X$. В силу леммы 5 имеем неравенство

$$
|\bar{H}|=|H / P \cap X| \leq|H /[H, f]| \leq\left|C_{H}(f)\right| \leq\left|C_{P}(f)\right|,
$$

т.е. $\left|C_{\bar{P}}(\bar{f})\right| \leq\left|C_{P}(f)\right|$. Так как централизатор $C_{\bar{P}}(\bar{f})$ элемента \bar{f} в группе \bar{P} является конечной группой, то по лемме 6 пересечение $\bar{P} \cap Z(\bar{G})$ отлично от единицы. Ввиду того, что $Z(\bar{G}) \leq \bar{X}$, имеем $\bar{P} \cap \bar{X} \neq 1$. Полученное противоречие доказывает, что $P<X$.

Таким образом, каждая силовская p-подгруппа периодической части $t(G)$ группы G содержится в ее гиперцентре X. Следовательно, $t(G)$ также содержится в гиперцентре X.

В силу теоремы 1 централизатор $C_{G / t(G)}(f t(G))$ образа элемента f в фак-тор-группе $G / t(G)$ имеет конечный ранг. Так как фактор-группа $G / t(G)$ группа без кручения, то по теореме 2 она является гиперцентральной группой. А так как $t(G) \leq X$, то и вся группа G гиперцентральна. Теорема доказана.

В качестве частного случая теоремы 3 приведем следующее утверждение.
Следствие 2. Пусть G - локально нильпотентная группа и f - некоторый ее элемент. Если централизатор $C_{G}(f)$ элемента f в группе G является конечно порожденной подгруппой, то группа G гиперцентральна.

1. Мальцев А.И. О группах конечного ранга // Мат. сб. -1948.- 22, № 2.- С. 351-352.
2. Зайцев Д.И., Оницук В.А. О локально нильпотентных группах с централизатором, удовлетворяющим условию конечности // Укр. мат. журн. -1991.- 43, N2 7, 8:- С. 1084-1087.
3. Онищук B.A. Локально нильпотентные группы с централизатором элемента конечного ранга // Междунар. конф. по алгебре: Тез. сообщ.- Барнаул, 1991.-С. 77.
4. Каргаполов М.И., Мерзляков Ю.И. Основы теории групп.- М.: Наука, 1982.- 288 с.
5. Neumann B.H. Identical relations in groups // Proc. London Math. Soc.- 1957.- 7, N 3.- P.29-62.
6. Зайцев Д.И. Группы, удовлетворяющие слабому условию минимальности // Укр. мат. журн. - 1968.- 20, № 4, 8.- C. 472-482.
7. Мальцев А.И. О некоторых классах бесконечных разрешимых групп // Мат. сб. -1951.- 28, № 3.- C. 567-588.
8. Robinson D.J.S. Finiteness condition and generalized soluble groups. Pt. 1.- New York: Springer, 1972.-210 p.

Получено 23.10.91

