В. А. Онищук, асп. (Ин-т математки АН Украины, Киев),

О ЛОКАЛЬНО НИЛЬПОТЕНТНЫХ ГРУППАХ С ЦЕНТРАЛИЗАТОРОМ КОНЕЧНОГО РАНГА

Изучаются локально нильпотентные группы, в которых централизатор некоторой конечно порождённой подгруппы имеет конечный ранг. Доказано, что если G — такая группа и F — её конечно порождённая подгруппа с централизатором $C_G(F)$ конечного ранга, то централизаторо образа подгруппы F в фактор-группе G/t(G) по её периодической части t(G) также имеет конечный ранг. Кроме того, показано, что группа G гиперцентральна в случаях, когда подгруппа F циклическая и либо G — группа без кручения, либо все силовские подгруппы из периодической части централизатора $C_G(F)$ конечны.

Вивчаються локально нільпотентні групи, в яких централізатор деякої скінченно породженої підгрупи має скінченний ранг. Доведено, що коли G — така група і F — ії скінченно породжена підгрупа з централізатором $C_G(F)$ скінченного рангу, то централізатор образу підгрупи F у фактор-групі G/t(G) по ії періодичній частині t(G) також має скінченний ранг. Крім того, показано, що група G гіперцентральна у випадках, коли підгрупа F циклічна і або G — група без скруту, або всі силовські підгрупи з періодичної частини централізатора $C_G(F)$ скінченні.

Одним из важнейших условий конечности в теории групп является условие

конечности специального ранга группы, введённого А.И.Мальцевым [1] и состоящего в следующем. Группа G имеет конечный специальний ранг, если r является наименьшим натуральным числом с тем свойством, что всякая конечно порождённая подгруппа группы G может быть порождена не более чем r элементами. Если такого натурального числа не существует, то специальный ранг группы считается бесконечным. Специальный ранг группы G обозначается ниже через r(G) и называется просто рангом группы.

В работе [2] показано, что если локально нильпотентная группа G содержит такую конечно порождённую подгруппу F, что централизатор $C_G(F)$ подгруппы F в группе G/Z имеет конечный ранг, то центр Z=Z(G) этой группы отличен от единицы. Более того, централизатор $C_{G/Z}(FZ/Z)$ подгруппы F в фактор-группе G/Z имеет конечный ранг. В частности, в группе G можно построить возрастающую цепь гиперцентров с натуральными номерами $1=Z_0< Z_1< Z_2< \ldots < Z_n< \ldots$, где $Z_n\neq Z_{n+1}$, если $Z_n\neq G$.

В настоящей работе продолжается изучение локально нильпотентных групп, в которых централизатор некоторой конечно порождённой подгруппы имеет конечный ранг. Будет показано, что централизатор $C_{G/t(G)}(Ft(G)/t(G))$ образа подгруппы F в фактор-группе G/t(G) группы G по её периодической части t(G) также имеет конечный ранг (теорема 1). Если F — циклическая подгруппа и G — группа без кручения, то в этом случае ряд гиперцентров можно продолжить до всей группы G, т.е. группа G будет гиперцентральной (теорема 2). Этот же результат справедлив и в случае, когда G — произвольная локально нильпотентная группа и все силовские подгруппы из периодиче-

результаты опубликованы без доказательств в работе [3]. Доказательству теоремы 1 предпошлём некоторые вспомогательные предложения, представляющие и самостоятельный интерес.

ской части $t(C_G(F))$ централизатора $C_G(F)$ конечны (теорема 3). Некоторые

1. Пусть π — некоторое множество простых чисел и π' — множество тех простых делителей порядков элементов группы G, которые не содержатся в множестве π . Периодическая группа G будет называться π -группой, если

3) $\pi(G/S) = \pi(K)$. Доказательство. Так как конечно порожденная нильпотентная группа финитно аппроксимируема [4, с.164], то группа G обладает множест-

все простые делители порядка любого элемента группы G принадлежат множеству п. Ниже множество всех простых делителей порядков элементов группы G будем обозначать через $\pi(G)$. Периодическая группа G называется

Лемма 1. Пусть G — конечно порожденная нильпотентная группа и K некоторая ее конечная подгруппа. Тогда в группе G существует такая характеристическая подгруппа S, которая удовлетворяет следующим условиям:

 π' -группой, если пересечение $\pi(G) \cap \pi$ пусто.

2) индекс |G:S| подгруппы S в группе G конечен;

1) пересечение $S \cap K$ единичное;

вом подгрупп $G_1, G_2, \dots, G_k, \dots$ конечного индекса в G, пересечение которых единично. В силу результата Б.Неймана [5] каждая подгруппа G_i содержит

подгруппу N_i , которая характеристична и имеет конечный индекс в группе G.

Ясно, что пересечение подгрупп N_i единично и потому для некоторого индек-

са i пересечение $N_i \cap K = 1$. Пусть S — максимальная среди характеристических подгрупп конечного индекса группы G со свойством $S \cap K = 1$. Тогда фактор-группа G/S конечна и каждая ее неединичная характеристическая подгруппа имеет неединичное пересечение с подгруппой KS/S. В частности,

каждая силовская подгруппа из фактор-группы G/S имеет с KS/S нетривиаль-

ное пересечение. Поэтому $\pi(G/S) = \pi(KS/S) = \pi(K)$, поскольку KS/ $S \simeq K$. Лемма доказана. **Лемма 2.** Пусть G — локально нильпотентная группа, F — некоторая ее конечно порожденная подгруппа и Н — подгруппа, удовлетворяющая условию $[H, F] \leq t(H)$,

где t(H) — периодическая часть группы H — является π -группой. Тогда если К — нормальный делитель подгруппы Н и фактор-группа Н/К является π'-группой, то

$$H = K C_H(F),$$

где $C_H(F)$ — централизатор подгруппы F в группе H. Доказательство. 1) Рассмотрим сначала случай, когда подгруппа

H конечно порождена. Тогда H нильпотентна, и ее периодическая часть t(H)конечна. В силу леммы 1 в группе Н существует такая характеристическая

подгруппа S, что $S \cap t(H) = 1$ и фактор-группа H/S является π -группой.

Так как согласно условию леммы фактор-группа $H/K - \pi'$ -группа, то индексы подгрупп S и K взаимно просты. Легко видеть, что тогда H = SK. Ввиду

того, что $[S, F] \le S \cap t(H) = 1$, получаем, что подгруппа S содержится в цент-

рализаторе $C_H(F)$. Отсюда следует нужное равенство $H = K C_H(F)$. 2) Рассмотрим теперь общий случай. В силу условия $[H, F] \le t(H)$ подгруппа F нормализует H. Пусть H_i — произвольная конечно порожденная подгруппа из H, нормализуемая подгруппой F. Так как $[H_i, F] \le t(H) \cap H_i =$

физма $H_i/H_i \cap K \cong H_iK/K \leq H/K$ фактор-группа $H_i/H_i \cap K$ является π' группой. Тогда в силу изложенного в п. 1 получаем

 $= t(H_i)$, то по условию леммы $t(H_i)$ — конечная π -группа. В силу изомор-

$$H_i = (H_i \cap K)C_{H_i}(F)$$
.

Покажем, что отсюда следует искомое равенство $H = K C_H(F)$. Так как $H = \bigcup_i H_i$, то для каждого элемента $h \in H$ существует такая подгруппа H_i , что $h \in H_i$. Как показано выше, элемент h представляется в виде ax, где $a \in H_i \cap K \le K$ и $x \in C_{H_i}(F) \le C_H(F)$. Поэтому элемент $h \in KC_H(F)$, и следовательно, $H = K C_H(F)$. Лемма доказана.

Лемма 3. Пусть G — конечно порожденная нильпотентная группа и H — некоторая ее подгруппа. Если простое число q не делит порядок периодической части группы G, то ранг фактор-группы H/H^qH' не превышает ранга фактор-группы G/G^qG' , где G'=[G,G] — коммутант группы G.

Доказательство. Известно, что центр Z бесконечной конечно порожденной группы G содержит элементы бесконечного порядка. Возьмем элемент z бесконечного порядка, принадлежащий центру Z группы G, и положим $\langle z_1 \rangle = H \cap \langle z \rangle$. Докажем лемму индукцией по показателю минимальности m(G) группы G, введенному Д.И.Зайцевым в работе [6]. Рассмотрим два возможных случая.

1) Пусть $\langle z_1 \rangle = H \cap \langle z \rangle = 1$. Введем обозначения $\overline{G} = G/\langle z \rangle$ и $\overline{H} = H\langle z \rangle/\langle z \rangle$. В силу теоремы Д.И.Зайцева [6] $m(\overline{G}) < m(G)$. Тогда по индуктивному предположению следует, что $r(\overline{H}/\overline{H}^q\overline{H}') \leq r(\overline{G}/\overline{G}^q\overline{G}')$. В силу изоморфизма

$$\overline{H}/\overline{H}^q\overline{H}'\simeq H\langle z\rangle/H^qH'\langle z\rangle\simeq H/H^qH'(H\cap\langle z\rangle)$$

и того, что $H \cap \langle z \rangle = 1$, получаем изоморфизм $\overline{H} / \overline{H}^q \overline{H}' \simeq H/H^q H'$. В силу изоморфизма $\overline{G} / \overline{G}^q \overline{G}' \simeq G/G^q G' \langle z \rangle$ фактор-группа $\overline{G} / \overline{G}^q \overline{G}'$ является гомоморфным образом фактор-группы $G/G^q G'$. Поэтому $r(\overline{G} / \overline{G}^q \overline{G}') \leq r(G/G^q G')$. Таким образом, имеем нужное неравенство $r(H/H^q H') \leq r(G/G^q G')$.

2) Пусть теперь $\langle z_1 \rangle = H \cap \langle z \rangle \neq 1$. В этом случае $\langle z_1 \rangle$ — бесконечная циклическая подгруппа группы H. Так как фактор-группа H/H^qH' конечна, то некоторая степень элемента z принадлежит H^qH' . Пусть $y \in z_1^n \in H^qH'$. Введем обозначения $\overline{G} = G/\langle y \rangle$ и $\overline{H} = H/\langle y \rangle$. В силу теоремы Д.И.Зайцева [6] $m(\overline{G}) < m(G)$. Тогда по предположению индукции имеем $r(\overline{H}/\overline{H}^q\overline{H}') \leq$

$$\overline{H}/\overline{H}^q\overline{H}'\simeq H/H^qH', \overline{G}/\overline{G}^q\overline{G}'\simeq G/G^qG'.$$

Таким образом, и в этом случае $r(H/H^qH') \le r(G/G^qG')$. Лемма доказана.

 $\leq r(\overline{G}/\overline{G}^q\overline{G}')$. Так как $y \in H^qH'$, то имеют место изоморфизмы

Теорема 1. Пусть G — локально нильпотентная группа с периодической частью T = t(G) и F — некоторая ее конечно порожденная подгруппа. Если ранг централизатора $C_G(F)$ подгруппы F в группе G конечен, то ранг централизатора $C_{G/T}(FT/T)$ образа подгруппы F в фактор-группе G/T также конечен.

Доказательство. Предположим, что централизатор $C_{G/T}(FT/T)$ — группа бесконечного ранга. В силу теоремы А.И. Мальцева [7] в группе $C_{G/T}(FT/T)$ существует абелева подгруппа A/T бесконечного ранга. Ясно,

H и фактор-группа $H/K - \pi'$ -группа. В силу леммы 2 получаем $H = K C_H(F)$. Ввиду этого равенства имеем $r(H/H^qH') = r(H/K) \le r(C_H(F)) = r$, т.е.

Пусть $r(C_G(F)) = r$. В фактор-группе $\overline{A} = A/T$ выберем конечно порож-

 $\overline{A}_0 = \langle \overline{a}_1 \rangle \times \langle \overline{a}_2 \rangle \times \cdots \times \langle \overline{a}_r \rangle \times \langle \overline{a}_{r+1} \rangle.$ Пусть $B_0 = \operatorname{гр}(a_1, a_2, \dots, a_r, a_{r+1})$ и $H = \operatorname{гр}(B_0, F)$. Тогда $[H, F] \le t(H)$ и, очевидно, периодическая часть t(H) группы H является конечной π -группой для некоторого множества простых чисел π . Если $K = H^q H'$, где q — простое число, которое не делит порядок t(H), то K —нормальный делитель в группе

 $r(H/H^qH') \le r$. С другой стороны, так как $B_0' \le t(G)$, фактор-группа B_0/B_0' — группа без кручения. Поэтому $r(B_0/B_0^q B_0') = r + 1$. В силу леммы 3 имеем

$$r + 1 = r(B_0 / B_0^q B_0') < r(H / H^q H') \le r.$$

Полученное противоречие доказывает теорему.

что $[A, F] \leq A \cap t(G) = t(A)$.

2. В работе [2] доказано, что если локально нильпотентная группа G содержит такую конечно порожденную подгруппу F, что централизатор $C_G(F)$

дённую абелеву подгруппу \overline{A}_0 с r+1 образующими:

имеет конечный ранг, то централизатор $C_{G/Z}(FZ/Z)$ образа подгруппы F в фактор-группе G/Z также имеет конечный ранг. В случае, когда $F = \langle f \rangle$ циклическая подгруппа группы G, справедливо следующее утверждение. **Лемма 4.** Пусть G — локально нильпотентная группа без кручения и f некоторый ее элемент. Если ранг централизатора $C_G(f)$ равен r, то ранг

централизатора $C_{G/Z}(fZ)$ образа элемента f в фактор-группе G/Zпревышает г.

неравенство

Доказательство. Пусть H — такая подгруппа группы G, что H = $=\{g \mid [g,f] \in Z, g \in G\}$. Тогда фактор-группа $H/Z=C_{G/Z}(fZ)$. Для всякого

 $h \in H$ отображение $\phi: h \mapsto [h, f]$ является гомоморфизмом подгруппы H в группу Z, причем ядро этого гомоморфизма совпадает с централизатором

 $C_{H}(f)$. Очевидно, $C_{G}(f) = C_{H}(f)$. По теореме о гомоморфизме фактор-группа $H/C_G(F)$ изоморфна некоторой подгруппе из группы Z. Так как центр Zгруппы G содержится в централизаторе $C_G(f)$, то $r(Z) \le r(C_G(f)) = r$, и если $r(Z) = s \le r$, то $r(H/C_G(f)) \le s$. Согласно теореме 2.25 [8], фактор-группы $H/C_G(f)$ и H/Z являются группами без кручения, и следовательно, справед-

ливы равенства $r(H) = r(C_G(f)) + r(H/C_G(f))$ и r(H) = r(Z) + r(H/Z). Из этих равенств получаем

доказательство леммы 4, легко доказать следующее утверждение.

 $r(Z) + r(H/Z) = r(C_G(f)) + r(H/C_G(f)).$ Ввиду того что $r(C_G(f)) = r$ и $r(H/C_G(f)) \le s$, из последнего равенства имеем

 $s+r(H/Z) \le r+s$ или $r(H/Z) \le r$. Таким образом, $r(C_{G/Z}(fZ)) \le r$, и лемма доказана. Используя индукцию по длине верхнего центрального ряда группы G и

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 11 1514

Следствие 1. Пусть G — локально нильпотентная группа без кручения и f— некоторый ее элемент. Если ранг централизатора $C_G(f)$ равен r, то ранг

 Z_k — некоторый член верхнего центрального ряда группы G с натуральным номером к, не превышает г. В частности, ранги всех факторов верхнего центрального ряда группы G с натуральными номерами не превышают числа г.

Теорема 2. Если в локально нильпотентной группе G без кручения цент-

централизатора $C_{G/Z_k}(fZ_k)$ образа элемента f в фактор-группе G/Z_k , где

рализатор $C_G(f)$ некоторого элемента f в группе G имеет конечный ранг, то она гиперцентральна.

Доказательство. В силу результатов работы [2] в группе G можно построить возрастающую цепь гиперцентров с натуральными номерами 1 = $= Z_0 < Z_1 < Z_2 < ... < Z_n <$ Если $r(C_G(f)) = r$, то из следствия 1 вытекает, что ранги всех факторов Z_k/Z_{k-1} этой цепи ограничены числом r. Пусть

 $Z_{\omega} = \bigcup_{k=1}^{\infty} Z_k$; покажем, что $r(C_{G/Z_{\omega}}(fZ_{\omega})) \le r$. Если H — такая подгруппа группы G, что

$$H=\{g\mid [g,f]\in Z_{\omega},g\in G\},$$
о фактор-группа $H/Z_{\omega}=C_{G/Z_{\omega}}(fZ_{\omega}).$ Нужно до

то фактор-группа $H/Z_{\omega} = C_{G/Z_{\infty}}(fZ_{\omega})$. Нужно доказать, что ранг факторгруппы H/Z_{ω} не превышает r. Действительно, пусть $X = \operatorname{гр}(g_1, g_2, \dots, g_r, f)$

— произвольная конечно порожденная подгруппа из группы H, содержащая элемент f. Так как $[g_i, f] \in Z_\omega$ и $Z_\omega = \bigcup_{k=1}^\infty Z_k$, то существует такой номер k, что $[g_i,f]\in Z_k$ для всех $i,i=1,2,\ldots,t$. Тогда $X\cap Z_\omega=X\cap Z_k$ и $[X,f]\leq X\cap Z_\omega=$ = $X \cap Z_k$. Отсюда $XZ_k/Z_k \le C_{G/Z_k}(fZ_k)$. Согласно следствию 1 $r(C_{G/Z_k}(fZ_k)) \le$

 $\leq r$, а значит, $r(XZ_k/Z_k) \leq r$. Но в силу изоморфизмов $XZ_\omega/Z_\omega \simeq X/X \cap Z_\omega =$ = $X/X \cap Z_k \cong XZ_k/Z_k$ получаем, что $r(XZ_{\omega}/Z_{\omega}) \le r$. Так как X — произвольная конечно порождённая подгруппа из H, то отсюда следует $r(H/Z_{10}) \le r$, т.е. $r(C_{G/Z_{\infty}}(fZ_{\omega})) \le r$. По теореме 2 из работы [2] это означает, что центр факторгруппы G/Z_{ω} отличен от единицы, т.е. $Z_{\omega+1} > Z_{\omega}$. Продолжая эти рассужде-

перцентральна. Теорема доказана. 3. В данном пункте рассматривается вопрос о гиперцентральности группы G в случае, когда G — произвольная локально нильпотентная группа. Дока-

ния и применяя к ним трансфинитную индукцию, получаем, что группа С ги-

зательству теоремы 3 — основного результата настоящей работы — предпошлем несколько вспомогательных предложений. **Лемма 5.** Пусть G — локально нильпотентная группа вида $G = P \langle f \rangle$, где P — нормальная p-подгруппа, $\langle f \rangle$ — циклическая подгруппа. Если цен-

льная подгруппа группы G, то в этом случае $[P,f] \cap Z(G) \neq 1$. Пусть z —

трализатор $C_P(f)$ элемента f в группе P является конечной группой, то фактор-группа Р/[Р, f] также является конечной группой и справедливо

неравенство $|P/[P,f]| \leq |C_P(f)|.$

Доказательство. 1) Предположим, что P — конечная подгруппа, и докажем лемму индукцией по порядку подгруппы P. Так как [P,f] — норма-

элемент порядка p из пересечения $[P,f]\cap Z(G)$. Введем обозначения $\overline{P}=$ $=P/\langle z\rangle$ и $\bar{f}=f\langle z\rangle$. В силу очевидного неравенства $|\overline{P}|<|P|$ и по предположению индукции имеем

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 11

1515

$$\left|\; \overline{P} \; / \left[\overline{P} \; , \; \overline{f} \; \right] \; \right| \; \leq \; \left|\; C_{\overline{P}} \; (\overline{f} \;) \; \right|.$$

Так как $\langle z \rangle \leq [P,f]$, то в силу изоморфизма $\overline{P}/[\overline{P},\overline{f}] \simeq P/[P,f] \langle z \rangle$ получаем, что $\overline{P}/[\overline{P},\overline{f}] \simeq P/[P,f]$.

Пусть $\overline{H}=C_{\overline{P}}$ (\overline{f}). Ясно, что $[H,f]\leq \langle z \rangle$. Если [H,f]=1, то $H=C_{P}(f)$, и из того, что $\mid \overline{H}\mid <\mid H\mid$, следует $\mid \overline{H}\mid <\mid C_{P}(f)\mid$. Таким образом, $\mid P/[P,f]\mid <\mid C_{P}(f)\mid$.

Если $[H,f] = \langle z \rangle$, то $H/C_H(f) \simeq [H,f]$. Тогда

$$|\overline{H}| = |H/\langle z \rangle| = |H/[H, f]| = |C_H(f)| \le |C_P(f)|.$$

Следовательно, в этом случае получаем искомое неравенство

$$|P/[P,f]| \leq |C_P(f)|.$$

2) Пусть теперь P — бесконечная подгруппа и K/[P,f] — произвольная конечная подгруппа в фактор-группе P/[P,f]. Тогда K=[P,f]S для некоторой конечной подгруппы S из P. Подгруппа A=гр (S,f) имеет вид R < f >, где $R=P\cap A$ — конечная подгруппа группы P, содержащая подгруппу S и содержащаяся в подгруппе K. Следовательно, K=[P,f]R и $[R,f] \le R \cap [P,f]$. В силу доказанного выше для случая 1 имеем неравенство $|R/[R,f]| \le |C_R(f)| \le |C_P(f)|$. Поэтому $|R/R \cap [P,f]| \le |C_P(f)|$. В силу изоморфизма $R/R \cap [P,f] = R[P,f]/[P,f] = K/[P,f]$ получаем $|K/[P,f]| \le |C_P(f)|$. Таким образом, в силу произвольности выбора подгруппы K/[P,f], имеем неравенство $|P/[P,f]| \le |C_P(f)|$. Лемма доказана.

Лемма 6. Пусть G — локально нильпотентная группа, $\langle f \rangle$ — некоторая ее циклическая подгруппа и P — силовская p-подгруппа в периодической части t(G). Если централизатор $C_P(f)$ элемента f в группе P является конечной группой, то пересечение подгруппы P с центром Z = Z(G) группы G отлично от единицы.

Доказательство. Пусть $\{G_{\alpha}, \alpha \in I\}$ — локальная система конечно порожденных подгрупп группы G, содержащих подгруппу, порожденную неединичным элементом $x \in P$ и элементом f. Положим $P_{\alpha} = P \cap G_{\alpha}$ и возьмем элемент x_{α} порядка p из пересечения $P_{\alpha} \cap Z(G_{\alpha})$. Так как подгруппа $H = \operatorname{rp}(x_{\alpha}, \alpha \in I)$ содержится в централизаторе $C_P(f)$, то H — конечная группа.

Зафиксируем индекс $\alpha \in I$ и рассмотрим подмножество индексов $J \subset I$ таких, что $G_{\alpha} \leq G_{\beta}$, $\beta \in J$. Заметим, что подмножеству индексов J соответствует множество подгрупп $\{G_{\beta}, \beta \in J\}$, которое также будет локальной системой подгрупп группы G. Множество индексов J разобьем на конечное число подмножеств $J = J_1 \cup J_2 \cup \ldots \cup J_n$ по принципу: $\gamma, \delta \in J_s$ тогда и только тогда, когда $x_{\gamma} = x_{\delta}$. В силу утверждения работы [2] получаем, что хотя бы одному из подмножеств индексов J_s (например, J_1) соответствует множество подгрупп $\{G_{\delta}, \delta \in J_1\}$, которое будет локальной системой подгрупп группы G. Общее значение совпадающих членов обозначим через $y, y = x_{\gamma} = x_{\delta} = \ldots$. Тогда $y \in Z(G_{\delta})$ для всех $\delta \in J_1$ и, следовательно, $y \in Z(G)$. Таким образом, пересе-

чение $P \cap Z(G)$ неединично. Лемма доказана.

Теорема 3. Пусть G — локально нильпотентная группа u f — некоторый ее элемент. Если централизатор $C_G(f)$ элемента f в группе G имеет конечный ранг u все силовские подгруппы периодической части $t(C_G(f))$ централизатора $C_G(f)$ конечны, то G-гиперцентральная группа.

Доказательство. Пусть P — силовская p-подгруппа периодической части t(G) группы G и X — последний член верхнего центрального ряда группы G. Покажем сначала, что P < X. Так как пересечение $P \cap X$ — нормальная подгруппа в G, то рассмотрим фактор-группы $\overline{G} = G/P \cap X$ и $\overline{P} = P/P \cap X$. Тогда \overline{P} — силовская p-подгруппа в $t(\overline{G})$. Докажем, что справедливо неравенство $|C_{\overline{P}}(\overline{f})| \le |C_P(f)|$. Действительно, пусть $\overline{H} = C_{\overline{P}}(\overline{f})$. Тогда $[H, f] \le P \cap X$. В силу леммы 5 имеем неравенство

$$|\overline{H}| = |H/P \cap X| \le |H/[H,f]| \le |C_H(f)| \le |C_P(f)|$$

т.е. $|C_{\overline{P}}(\overline{f})| \leq |C_P(f)|$. Так как централизатор $C_{\overline{P}}(\overline{f})$ элемента \overline{f} в группе \overline{P} является конечной группой, то по лемме 6 пересечение $\overline{P} \cap Z(\overline{G})$ отлично от единицы. Ввиду того, что $Z(\overline{G}) \leq \overline{X}$, имеем $\overline{P} \cap \overline{X} \neq 1$. Полученное противоречие доказывает, что P < X.

Таким образом, каждая силовская p-подгруппа периодической части t(G) группы G содержится в ее гиперцентре X. Следовательно, t(G) также содержится в гиперцентре X.

В силу теоремы 1 централизатор $C_{G/t(G)}(ft(G))$ образа элемента f в фактор-группе G/t(G) имеет конечный ранг. Так как фактор-группа G/t(G) — группа без кручения, то по теореме 2 она является гиперцентральной группой. А так как $t(G) \le X$, то и вся группа G гиперцентральна. Теорема доказана.

В качестве частного случая теоремы 3 приведем следующее утверждение.

Следствие 2. Пусть G — локально нильпотентная группа u f — некоторый ее элемент. Если централизатор $C_G(f)$ элемента f в группе G является конечно порожденной подгруппой, то группа G гиперцентральна.

- 1. Мальиев А.И. О группах конечного ранга // Мат. сб. –1948.– 22, № 2.– С. 351–352.
- Зайцев Д.И., Онищук В.А. О локально нильпотентных группах с централизатором, удовлетворяющим условию конечности // Укр. мат. журн. –1991. 43, № 7, 8:– С. 1084–1087.
- Онищук В.А. Локально нильпотентные группы с централизатором элемента конечного ранга // Междунар. конф. по алгебре: Тез. сообщ. – Барнаул, 1991. – С. 77.
- 4. Каргаполов М.И., Мерэляков Ю.И. Основы теории групп.— М.: Наука, 1982.— 288 с.
- 5. Neumann B.H. Identical relations in groups // Proc. London Math. Soc. 1957. 7, N 3. P.29–62.
- 6. Зайцев Д.И. Группы, удовлетворяющие слабому условию минимальности // Укр. мат. журн.
- Зайцев Д.И. 1 руппы, удовлетворяющие слаюму условию минимальности // Укр. мат. журн – 1968.– 20, № 4, 8.– С. 472–482.
- Мальцев А.И. О некоторых классах бесконечных разрешимых групп // Мат. сб. –1951.– 28, № 3.– С. 567–588.
- Robinson D.J.S. Finiteness condition and generalized soluble groups. Pt. 1.— New York: Springer, 1972.—210 p.

Получено 23.10.91