ПРЕДСТАВЛЕНИЯ ВЕЩЕСТВЕННЫХ ФОРМ ГРАДУИРОВАННОГО АНАЛОГА АЛГЕБРЫ ЛИ

Описаны вещественные формы \mathbb{Z}_{2}^{n}-градуированного аналога алгебры Ли $\operatorname{sl}(2, \mathbb{C})$ и изучены их неприводимые представления.

Описані дійсні форми \mathbb{Z}_{2}^{n}-градуиованого аналога алгебри Лі $s l(2, \mathbb{C})$ та вивчені іх незвідні представлення.
Развитие теории квантовых физических систем стимулировало интерес к квадратичным алгебрам и их представлениям (см. [1] и др.). Если в квадратичной алгебре введена вещественная структура, естественно рассматривать *-представления соответствующей алгебры.

В настоящей работе изучаются представления вещественных структур в \mathbb{Z}_{2}^{n}-градуированном аналоге алгебры Ли $s l(2, \mathbb{C})$. Изложенные результаты анонсированы в [2].

1. Напомним, что \mathbb{Z}_{2}^{n}-градуированная (цветная) алгебра Ли - это \mathbb{Z}_{2}^{n}-градуированное линейное пространство

$$
L=\oplus_{i \in \mathbb{Z}_{2}^{n}} L_{i}, \quad \mathbb{Z}_{2}^{n}=\{0,1\}^{n}
$$

в котором определена билинейная операция $\langle\cdot, \cdot\rangle$ такая, что для $a \in L_{i}, b \in$ $\in L_{k}$ выполняются соотношения

$$
\begin{gathered}
\langle a, b\rangle=c \in L_{l}, \operatorname{grad} c=\operatorname{grad} a \cdot \operatorname{grad} b, \\
\langle a, b\rangle=-(-1)^{\sum_{r} g_{r}(a) g_{r}(b)}\langle b, a\rangle .
\end{gathered}
$$

(Здесь $\operatorname{grad} u=\left(g_{1}(u), \ldots, g_{n}(u)\right)$ - градуировка элемента u, - операция в \mathbb{Z}_{2}^{n}, и выполнено тождество Якоби с учетом соответствующего правила знаков (см., например, [3]).)

В дальнейшем для обозначения операции $\langle\cdot, \cdot\rangle$ будем использовать обозначение $\{a, b\}$ (антикоммутатор), если $\langle a, b\rangle=\langle b, a\rangle$, и $[a, b]$ (коммутатор), если $\langle a, b\rangle=-\langle b, a\rangle$.

Если выбрать $n=3$ и трехмерное пространство $L=L_{(1,1,0)} \oplus L_{(1,0,1)} \oplus$ $\oplus L_{(0,1,1)}$ с базисом a_{1}, a_{2}, a_{3}, то получаем соотношения

$$
\begin{align*}
& {\left[a_{j}, a_{j}\right]=0, j=1,2,3,} \\
& \left\{a_{1}, a_{2}\right\}=c_{12} a_{3}, \\
& \left\{a_{2}, a_{3}\right\}=c_{23} a_{1}, \\
& \left\{a_{1}, a_{3}\right\}=c_{13} a_{2}, \tag{1}
\end{align*}
$$

В настоящей работе рассматривается аналог алгебры $\operatorname{sl}(2, \mathbb{C})$ - алгебра, полученная из (1) при $c_{12}=c_{23}=c_{13}=1$ (если в (1) заменить антикоммутаторы коммутаторами, то получим $\operatorname{sl}(2, \mathbb{C})$).

В дальнейшем рассматриваем алгебру L вложенной в ее универсальную обертывающую $U(L)$-ассоциативную алгебру с тремя образующими a_{1}, a_{2}, a_{3} и соотношениями

$$
\begin{align*}
& a_{1} a_{2}+a_{2} a_{1}=a_{3} \\
& a_{2} a_{3}+a_{3} a_{2}=a_{1} \\
& a_{3} a_{1}+a_{1} a_{3}=a_{2} \tag{2}
\end{align*}
$$

Поскольку в дальнейшем изучается алгебра $U(L)$, в данной работе считаем изоморфными алгебры L и L^{\prime}, если они порождают изоморфные алгебры $U(L)$ и $U\left(L^{\prime}\right)$. Например, соотношения (2) можно получить с группой \mathbb{Z}_{2}^{n}, отличной от \mathbb{Z}_{2}^{3} (но не \mathbb{Z}_{2}).
2. Рассмотрим вопросы, связанные с введением в L (соответственно $U(L)$) вещественной структуры.

Определение 1. Под вещественной структурой в алгебре L понимаем антилинейное отображение (инволюция) $*: \dot{L} \rightarrow L$ такое, что $a^{* *}=a \quad u$ $\langle a, b\rangle^{*}=\left\langle b^{*}, a^{*}\right\rangle$ для любьх $a, b \in L$.

Инволюция в L единственным образом продолжается до инволюции в ассоциативной алгебре $U(L)$.

Инволюции в L будем считать эквивалентными, если они приводят к изоморфным *-алгебрам $U(L)$.

Утверждение 1. В алгебре L существуют три не эквивалентные инволюции: 1) $a_{j}^{*}=a_{j}, j=1,2,3$; 2) $a_{1}^{*}=a_{1}, a_{2}^{*}=-a_{2}, a_{3}^{*}=-a_{3}$; 3) $a_{1}^{*}=a_{1}, a_{2}^{*}=a_{3}$.

Доказательство проводится непосредственно.
Квадратичную алгебру $U(L)$ с i-й инволюцией в дальнейшем обозначим через R_{i}.

В алгебрах $R_{i}, i=1,2,3$, выберем самосопряженные образующие следующим образом: $E_{0}=a_{1}$ во всех $R_{i} ; E_{1}=a_{2}+a_{3}$ в R_{1} и $R_{3} ; E_{1}=i\left(a_{2}+a_{3}\right)$ в R_{2}; $E_{2}=a_{2}-a_{3}$ в $R_{1}, E_{2}=i\left(a_{2}-a_{3}\right)$ в R_{2} и R_{3}. Для образуюших E_{0}, E_{1}, E_{2} два соотношения имеют вид

$$
\begin{equation*}
\left\{E_{0}, E_{1}\right\}=E_{1}, \quad\left\{E_{0}, E_{2}\right\}=-E_{2} \tag{3}
\end{equation*}
$$

общий для всех трех алгебр R_{i}, а третье соотношение в алгебрах R_{1}, R_{2}, R_{3} соответственно имеет вид

$$
\begin{align*}
& E_{1}^{2}-E_{2}^{2}=2 E_{0} \\
& E_{1}^{2}-E_{2}^{2}=-2 E_{0} \\
& E_{1}^{2}+E_{2}^{2}=2 E_{0}
\end{align*}
$$

3. Перейдем к изучению $*-п р е д с т а в л е н и и ̆ ~ а л г е б р ~ R ~-~ т р о е к ~ с а м о с о п р я ж е н-~$ ных операторов E_{0}, E_{1}, E_{2} в гильбертовом пространстве H, удовлетворяющих соотношениям (3) и (3'). Поскольку операторы не предполагаются ограниченными, следует выделить класс "интегрируемых" представлений, т.е. указать точный смысл соотношений (3) и (3') для неограниченных E_{0}, E_{1}, E_{2}.

Определение 2. "Интегрируемым" представлением алгебры R_{i} назовем тройку самосопряженных операторов E_{0}, E_{1}, E_{2}, между которыми на плотном в H множестве Φ, состоящем из векторов, целых для операторов E_{0}, E_{1}, E_{2}, выполнены соотношения (3) u (3^{\prime}).

Для таким образом определенных операторов E_{0}, E_{1}, E_{2} выполнены соотношения [4]

$$
\begin{aligned}
& E_{E_{0}}(\Delta) E_{1} \varphi=E_{1} E_{E_{0}}(1-\Delta) \varphi \\
& E_{E_{0}}(\Delta) E_{2} \varphi=E_{2} E_{E_{0}}(-1-\Delta) \varphi, \varphi \in \Phi
\end{aligned}
$$

которые в дальнейшем используются при изучении представлений. Здесь $E_{E_{0}}(\cdot)$ - разложение единицы самосопряженного оператора E_{0}

Рассмотрим самосопряженный оператор D, который в алгебре R_{i} имеет соответственно вид

$$
\begin{aligned}
& D=E_{1}^{2}+E_{0}^{2}-E_{0}=E_{2}^{2}+E_{0}^{2}+E_{0} \\
& D=-E_{1}^{2}+E_{0}^{2}-E_{0}=-E_{2}^{2}+E_{0}^{2}+E_{0} \\
& D=E_{1}^{2}-E_{0}^{2}+E_{0}=-E_{2}^{2}-E_{0}^{2}+3 E_{0}
\end{aligned}
$$

(Разночтений при определении D не возникает, поскольку в силу [4] операторы E_{1}^{2}, E_{2}^{2} коммутируют с E_{0} в смысле разложений единицы.)

Лемма 1. Оператор D коммутирует $с E_{0}, E_{1}, E_{2}$ в смысле разложения единицы.

Доказательство. Рассмотрим алгебру R_{1} (случаи R_{2} и R_{3} аналогичны). Оператор E_{0} коммутирует с D, поскольку он коммутирует с E_{1}^{2}. Так как [4]

$$
\begin{aligned}
& E_{E_{0}}(\Delta) g_{\text {even }}\left(E_{1}\right)=g_{\text {even }}\left(E_{1}\right) E_{E_{0}}(\Delta) \\
& E_{E_{0}}(\Delta) g_{\text {odd }}\left(E_{1}\right)=g_{\text {odd }}\left(E_{1}\right) E_{E_{0}}(1-\Delta)
\end{aligned}
$$

для всех измеримых $\Delta \in \mathbb{R}^{1}$ и всех ограниченных измеримых функций $g_{\text {even }}$, $g_{\text {odd }}$ ($g_{\text {even }}$ четная, $g_{\text {odd }}$ нечетная), для любой ограниченной измеримой функции f имеем

$$
\begin{aligned}
& f(D) g_{\text {even }}\left(E_{1}\right)=\int_{\mathbb{R}^{2}} f\left(\lambda_{1}+\lambda_{0}^{2}-\lambda_{0}\right) d E_{E_{1}^{2}}\left(\lambda_{1}\right) d E_{E_{0}}\left(\lambda_{0}\right) g_{\text {even }}\left(E_{1}\right)=g_{\text {even }}\left(E_{1}\right) f(D) \\
& f(D) g_{\text {odd }}\left(E_{1}\right)=\int_{\mathbb{R}^{2}} f\left(\lambda_{1}+\lambda_{0}^{2}-\lambda_{0}\right) d E_{E_{1}^{2}}\left(\lambda_{1}\right) d E_{E_{0}}\left(\lambda_{0}\right) g_{\text {odd }}\left(E_{1}\right)= \\
& =g_{\text {odd }}\left(E_{1}\right) \int_{\mathbb{R}^{2}} f\left(\lambda_{1}+\lambda_{0}^{2}-\lambda_{0}\right) d E_{E_{1}^{2}}\left(\lambda_{1}\right) d E_{E_{0}}\left(1-\lambda_{0}\right)= \\
& =g_{\text {odd }}\left(E_{1}\right) \int_{\mathbb{R}^{2}} f\left(\lambda_{1}+\left(1-\lambda_{0}\right)^{2}-\left(1-\lambda_{0}\right)\right) d E_{E_{1}^{2}}\left(\lambda_{1}\right) d E_{E_{0}}\left(\lambda_{0}\right)=g_{\text {odd }}\left(E_{1}\right) f(D)
\end{aligned}
$$

Таким образом, для любых ограниченных измеримых функций f, g ограниченные операторы $f(D)$ и $g\left(E_{1}\right)$ коммутируют. Аналогично, поскольку

$$
f(D)=\int_{\mathbb{R}^{2}} f\left(\lambda_{2}+\lambda_{0}^{2}+\lambda_{0}\right) d E_{E_{2}^{2}}\left(\lambda_{2}\right) d E_{E_{0}}\left(\lambda_{0}\right)
$$

то $f(D)$ коммутирует с $g\left(E_{1}\right)$.
4. Изучим общие для всех алгебр R_{i} свойства неприводимых *-представлений. Изучим предварительно некоторые свойства спектра оператора E_{0}. В силу первых двух соотношений в алгебре $R_{i} \forall \Delta \in \wp\left(\mathbb{R}^{1}\right), l=1,2,3 \ldots$

$$
\begin{gather*}
E_{E_{0}}(\Delta) E_{1, l}=E_{1, l} E_{E_{0}}(\Delta-1) \\
E_{E_{0}}(\Delta) E_{2, l}=E_{2, l} E_{E_{0}}(-1-\Delta) \tag{+}
\end{gather*}
$$

(Здесь $E_{i, l}=E_{E_{i}}[-l, l] E_{i}, l=1,2$.)
Рассмотрим два отображения $F_{1}(\lambda)=1-\lambda, F_{2}(\lambda)=-1-\lambda$ и динамическую систему (дискретную) на \mathbb{R}^{1}, порожденную этими отображениями.

Лемма 2. В неприводимом представлении алгебры R_{i} спектр оператора E_{0} дискретен и лежит на некоторой орбите динамической системы, порожденной F_{1}, F_{2}.

Доказательство. Действительно, если $\delta \in \mathcal{B}\left(\mathbb{R}^{1}\right)$ инвариантно относительно F_{1}, F_{2}, то оператор $E_{E_{0}}(\delta)$ коммутирует в силу (4) с E_{0}, E_{1}, E_{2} и поэтому равен 0 или 1 . Таким образом, в неприводимом представлении спектральная мера оператора E_{0} эргодична относительно действия динамической системы. Поскольку у данной динамической системы существует измеримое сечение (множество, содержащее по одной точке из каждой орбиты), например, $[-1 / 2,1 / 2]$, то эргодическая мера сосредоточена на одной орбите динамической системы.

Таким образом, для описания неприводимых представлений достаточно описать неприводимые представлеия, при которых спектр оператора E_{0} сосредоточен на орбите динамической системы, порожденной F_{1}, F_{2}, проходящей через точку $\lambda_{0} \in[-1 / 2,1 / 2]$.

Лемма 3. В неприводимом представлении алгебры R_{i} спектр оператора E_{0} nрост.

Доказательство. Пусть H_{λ} - собственное подпространство оператора E_{0} с собственным значением λ. Поскольку E_{0} коммутирует с E_{1}^{2} и E_{2}^{2}, то H_{λ} инвариантно относительно них. Если $H_{\lambda} \neq \mathbb{C}^{1}$, то существует подпространство $H_{\lambda}^{\prime} \subset H_{\lambda}$, инвариантное относительно E_{1}^{2}, E_{2}^{2}. Но тогда подпространство $H^{\prime} \subset H$, полученное в результате действия на H_{λ}^{\prime} полугруппы, порожденной E_{1} и E_{2}, инвариантно и отлично от H.

Из соотношений (3) следует, что справедлива следующая лемма.
Лемма 4. Если $e \in H_{\lambda}$, то: 1) $E_{1} e \in H_{1-\lambda}$; 2) $E_{2} e \in H_{-1-\lambda}$.
Пусть $\left\{e_{\lambda}\right\}$ - собственный базис для оператора E_{0}. Тогда

$$
\begin{equation*}
E_{1} e_{\lambda}=b_{1}(\lambda) e_{1-\lambda}, \quad E_{2} e_{\lambda}=b_{2}(\lambda) e_{-1-\lambda} . \tag{5}
\end{equation*}
$$

При этом в силу самосопряженности E_{1}, E_{2}

$$
\begin{aligned}
& b_{1}(\lambda)=\overline{b_{1}(1-\lambda)}, b_{2}(\lambda)=\overline{b_{2}(-1-\lambda)}, \\
& E_{1}^{2} e_{\lambda}=\left|b_{1}(\lambda)\right|^{2} e_{\lambda}, E_{2}^{2} e_{\lambda}=\left|b_{2}(\lambda)\right|^{2} .
\end{aligned}
$$

В дальнейшем, переходя к унитарно эквивалентному представлению, считаем $b_{j}(\lambda) \geq 0$, если $F_{j}(\lambda) \neq \lambda$, и $b_{j}(\lambda) \in \mathbb{R}^{1}$, если $F_{j}(\lambda)=\lambda, j=1,2$. Для нахождения $b_{j}(\lambda)$ воспользуемся леммой 1 .

Поскольку в неприводимом представлении $D=c I, c \in \mathbb{R}^{1}$, то, например, для алгебры R_{1}

$$
\begin{align*}
& b_{1}^{2}(\lambda) e_{\lambda}=E_{1}^{2} e_{\lambda}=\left(D-E_{0}^{2}+E_{0}\right) e_{\lambda}=\left(c-\lambda^{2}+\lambda\right) e_{\lambda}=\varphi_{1}(\lambda) e_{\lambda}, \\
& b_{2}^{2}(\lambda) e_{\lambda}=E_{2}^{2} e_{\lambda}=\left(D-E_{0}^{2}-E_{0}\right) e_{\lambda}=\left(c-\lambda^{2}-\lambda\right) e_{\lambda}=\varphi_{2}(\lambda) e_{\lambda} . \tag{6}
\end{align*}
$$

Аналогично, в алгебре R_{2}

$$
\begin{align*}
& b_{1}^{2}(\lambda)=\lambda^{2}-\lambda-c \equiv \varphi_{1}(\lambda), \\
& b_{2}^{2}(\lambda)=\lambda^{2}+\lambda-c \equiv \varphi_{2}(\lambda) \tag{7}
\end{align*}
$$

и в R_{3}

$$
\begin{gather*}
b_{1}^{2}(\lambda)=\lambda^{2}-\lambda+c \equiv \varphi_{1}(\lambda), \\
b_{2}^{2}(\lambda)=-\lambda^{2}+3 \lambda-c \equiv \varphi_{2}(\lambda) . \tag{8}
\end{gather*}
$$

Лемма 5. Представления, соответствующие различным парам $\left(\lambda_{0}, c\right)$,
$\lambda_{0} \in[-1 / 2,1 / 2], c \in \mathbb{R}^{1}$, унитарно не эквивалентны.
Доказательство. Денствительно, параметр $\lambda_{0} \in[-1 / 2,1 / 2]$ задает орбиту динамической системы, на которой расположен спектр оператора E_{0}, а параметр $с$ определяет действие оператора D, поэтому представления, соответствующие различным парам (λ_{0}, c) не эквивалентны.

Замечание 1. Значениям параметра $\lambda_{0}= \pm 1 / 2$ соответствуют случаи, когда отображение F_{1} или F_{2} имеет неподвижную точку λ_{0}. в этом случае $b_{1}\left(\lambda_{0}\right)$ или $b_{2}\left(\lambda_{0}\right)$ соответственно определяется с точностью до знака и паре (λ_{0}, c) может соответствовать два представления.

Найдем условия, при которых паре (λ_{0}, c) отвечает неприводимое представление $R_{i}, i=1,2,3$.

Пусть для пары (λ_{0}, c), $\lambda_{0} \in[-1 / 2,1 / 2], c \in \mathbb{R}^{1}$, существует λ, принадлежащее орбите точки λ_{0}, такое что $\varphi_{1}(\lambda)>0$, но $\varphi_{1}\left(F_{2}(\lambda)\right)<0$ или $\varphi_{2}(\lambda)>0$, но $\varphi_{2}\left(F_{1}(\lambda)\right)<0\left(\varphi_{1}\right.$ и φ_{2} определяются соответствующими алгебре R_{i} формулами (6) - (8)). Тогда паре (λ_{0}, c) не соответствует никакое неприводимое представление алгебры R_{i}. Действительно, $b_{j}(\lambda), j=1,2$, вещественны, а в указанном случае выражение для $b_{j}^{2}(\lambda)$ отрицательно.

В случае же, когда $\varphi_{1}(\lambda)=0$ (или $\varphi_{2}(\lambda)=0$), подпространства, натянутые на собственные пространства H_{λ}, отвечающие собственным значениям $F_{1}(\lambda)$, $F_{2}\left(F_{1}(\lambda)\right), F_{1}\left(F_{2}\left(F_{1}(\lambda)\right)\right) \ldots$ и $F_{2}(\lambda), F_{1}\left(F_{2}(\lambda)\right), F_{2}\left(F_{1}\left(F_{2}(\lambda)\right)\right) \ldots$ инвариантны.

Лемма 6. Паре (λ_{0}, c) соответствует неприводимое представление, если выполнено одно из условий.

1) Для всех λ, лежащих на орбите $O_{\lambda_{n}}$ точки $\lambda_{0}, \varphi_{j}(\lambda)>0, j=1,2$.
2) Для некоторого $\lambda \in O_{\lambda_{0}} \varphi_{1}(\lambda)=0, \varphi_{2}(\lambda)>0$ и для всех точек μ таких, что $\mu \in \Delta_{1}=\left\{F_{2}(\lambda), F_{1}\left(F_{2}(\lambda)\right), F_{2}\left(F_{1}\left(F_{2}(\lambda)\right)\right) \ldots\right\} \varphi \varphi_{j}(\mu)>0, j=1,2$.
3) Для некоторого $\lambda \in O_{\lambda_{0}} \varphi_{2}(\lambda)=0, \varphi_{1}(\lambda)>0$ и $\forall \mu \in \Delta_{2}=\left\{F_{1}(\lambda)\right.$, $\left.F_{2}\left(F_{1}(\lambda)\right), F_{1}\left(F_{2}\left(F_{1}(\lambda)\right)\right), \ldots\right\} \varphi_{j}(\mu)>0, j=1,2$.
4) Для некоторого $\lambda \in O_{\lambda_{0}}$ существует $\lambda^{\prime} \in O_{\lambda_{0}}$ такое, что $\varphi_{j}(\lambda)=0$, $\varphi_{k}(\lambda)>0, \varphi_{j}\left(\lambda^{\prime}\right)>0, \varphi_{k}\left(\lambda^{\prime}\right)=0, \lambda^{\prime}=F_{j}\left(F_{k}\left(\ldots F_{k}(\lambda) \ldots\right)\right)$ и $\quad \forall \mu \in \Delta_{1}=\left\{F_{2}(\lambda)\right.$, $\left.F_{1}\left(F_{2}(\lambda)\right), \ldots, F_{1}\left(\lambda^{\prime}\right)\right\} \varphi_{1}(\mu)>0, \varphi_{2}(\mu)>0, j \neq k, j^{\prime} \neq k^{\prime}$.

Cпектр оператора E_{0} - множество $O_{\lambda_{0}}$ в случае 1 , множество $\Delta \cup \lambda$ - в случалх 2,3 , множество $\Delta \cup \lambda \cup \lambda^{\prime}-$ в случае 4 .

Доказательство. Неприводимость представления следует из того, что спектр оператора E_{0} простои, и положительности $\varphi_{i}(\Omega), i=1,2$. Остальные утверждения - итог приведенных выше рассуждении.
5. Перейдем к изучению представлений для каждой из алгебр $R_{i} ; i=1,2,3$. Отметим, что представления R_{1} изучены в [5]. Аналогичное описание получим, пользуясь развитой техникой.
а) Для алгебры R_{1} заметим, прежде всего, что все неприводимые представления конечномерны. Действительно, выражения (6) для $b_{1}^{2}(\lambda)$ и $b_{2}^{2}(\lambda)$ содержат член $-\lambda^{2}$ и, следовательно, могут быть положительными лишь для

конечного числа точек $\mu \in O_{\lambda_{0}}=\left\{\lambda_{k}=(-1)^{k}\left(\lambda_{0}-k\right): k \in \mathbb{Z}\right\}\left(\lambda_{0} \in\{-1 / 2,1 / 2\}\right)$. Таким образом, для R_{1} реализуется только случай 4 из леммы 6 . Непосредственные вычисления показзывают, что условия леммы 6 могут быть выполнены только для $\lambda_{0} \in\{-1 / 2,0,1 / 2\}$. Из условий $\varphi_{1}\left(\lambda_{l}\right)=0, \varphi_{2}\left(\lambda_{m}\right)=0$ получаем $c=\lambda_{l}^{2}-\lambda_{l}=\lambda_{m}^{2}+\lambda_{m}$, откуда с учетом $\varphi_{2}\left(\lambda_{l}\right)>0, \varphi_{1}\left(\lambda_{m}\right)>0$ имеем для $\lambda_{0}=0$, $l=-m \cdot$ и $c_{l}=l^{2}-|l|$, причем $\operatorname{sign} l=(-1)^{l+1}$; размерность представления $2|l|+1$.

При $\lambda_{0}=1 / 2$ орбита содержит неподвижную относительно F_{1} точку λ_{0}. При этом $\lambda_{0}=\lambda_{1}, \lambda_{-1}=\lambda_{2}, \ldots, \lambda_{-k}=\lambda_{k+1}, \ldots$. Числу $с$ соответствует неприводимое представление, если $\varphi_{1}\left(\lambda_{l}\right)=0, \varphi_{2}\left(\lambda_{l}\right)>0$ или $\varphi_{1}\left(\lambda_{l}\right)>0, \varphi_{2}\left(\lambda_{l}\right)=0$. Отсюда $c_{l}=\lambda_{l}^{2}-\left|\lambda_{l}\right|, l=1,2,3, \ldots$; размерность представления l; паре $\left(\lambda_{0}, c\right)$ соответствует два представления, различающихся знаком при $b_{1}\left(\lambda_{1}\right)=$ $= \pm\left(\varphi_{1}\left(\lambda_{0}\right)\right)^{1 / 2}$ (см. замечание 1$)$.

Аналогично, при $\lambda_{0}=-1 / 2$ точка λ_{0} неподвижна относительно F_{2}, поэтому $\lambda_{0}=\lambda_{-1}, \ldots, \lambda_{k}=\lambda_{-k-1}, \ldots$. При этом $c_{l}^{2}=\lambda_{l}^{2}-\left|\lambda_{l}\right|, l=0,1,2, \ldots$; размерность представления $l+1$; паре (λ_{0}, c_{l}) соответствуют также два неприводимых представления.

Теорема 2 [5]. Все неприводимые представления алгебры R_{1} конечномерны. В собственном базисе E_{0} они реализуются по формулам

$$
\begin{gathered}
E_{0} e_{k}=\lambda_{k} e_{k}, \quad E_{1} e_{k}=\left(\varphi_{1}\left(\lambda_{k}\right)\right)^{1 / 2} e_{k+(-1)^{k}}, \\
E_{2} e_{k}=\left(\varphi_{2}\left(\lambda_{k}\right)\right)^{1 / 2} e_{k-(-1)^{k}},
\end{gathered}
$$

где

$$
\varphi_{1}\left(\lambda_{k}\right)=l^{2}-l-\lambda_{k}^{2}+\lambda_{k}, \quad \varphi_{2}\left(\lambda_{k}\right)=l^{2}-l-\lambda_{k}^{2}-\lambda_{k},
$$

причем возможны случаи:

1) $\operatorname{dim} H=2 l+1(l=0,1,2, \ldots) k=-l, \ldots, l, \lambda_{k}=(-1)^{k+1} k$;
2) $\operatorname{dim} H=l+1(l=0,1,2, \ldots) \lambda_{k}=(-1)^{k}(-1 / 2-k), k=0, \ldots, l$, u npu $k=0$ $E_{2} e_{0}= \pm\left(\varphi_{2}(-1 / 2)\right)^{1 / 2} e_{0}$;
3) $\operatorname{dim} H=\cdot l(l=1,2, \ldots) \lambda_{k}=(-1)^{k}(1 / 2-k), k=1, \ldots, l$, и при $k=1 \quad E_{1} e_{1}=$ $= \pm\left(\varphi_{1}(1 / 2)\right)^{1 / 2} e_{1}$.
б) Для алгебры R_{2} выражения $\varphi_{1}(\lambda)$ и $\varphi_{2}(\lambda)$ содержат член λ^{2}, и следовательно, для ее представлений реализуются случаи 1,2 и 3 теоремы 1 (исключение составляет тривиальное представление $E_{0}=E_{1}=E_{2}=0$, соответствующее $\lambda_{0}=0, c=0$; здесь реализуется случай 4). В отличие от случая R_{1}, для алгебры R_{2} любому значению $\lambda_{0} \in[-1 / 2,1 / 2]$ соответствуют неприводимые представления.

При $c<\lambda_{0}^{2}-\left|\lambda_{0}\right|$ имеем $\varphi_{1}(\lambda)>0, \varphi_{2}(\lambda)>0$ для всех $\lambda \in O_{\lambda_{0}}=$ $=\left\{(-1)^{k}\left(\lambda_{0}--k\right): k \in \mathbb{Z}\right\}$, поэтому реализуется случай 1 из теоремы 1 ; спектр оператора E_{0} совпадает с $O_{\lambda_{0}}$, а паре $\left(\lambda_{0}, c\right)$ соответствует единственное неприводимое представление (при $\lambda_{0}= \pm 1 / 2$ - два неприводимых представления, см. замечание 1). При $c=\lambda_{0}^{2}-\left|\lambda_{0}\right|$ паре (λ_{0}, c) отвечает два неприводи-

мых представления (при $\lambda_{0}=0, c=0$, третье тривиальное) соответствующие случаи 2 или 3 теоремы 1 . При $c>\lambda_{0}^{2}-\left|\lambda_{0}\right|$ неприводимые представления существуют для $c=\left(\lambda_{0}-k\right)^{2}-\left|\left(\lambda_{0}-k\right)\right|$; реализуются случаи 2 или 3 теоремы 1 , причем при $\lambda_{0}=0, \pm 1 / 2$ реализуются оба случая одновременно (паре (λ_{0}, c) соответствует два неприводимых представления).

Теорема 3. Алгебра R_{2} имеет нетривиальные неприводимые представления лишь неограниченными операторами. Представления параметризуются параметрами $\lambda_{0} \in[-1 / 2,1 / 2]$ и $с \in\left(-\infty, \lambda_{0}^{2}-\left|\lambda_{0}\right|\right] \cup\left\{\left(\lambda_{0}-k\right)^{2}-\mid\left(\lambda_{0}-\right.\right.$ $-k) \mid: k \in \mathbb{Z}, k \neq 0\}$, причем при $\lambda_{0}= \pm 1 / 2$ или $c=\lambda_{0}^{2}-\left|\lambda_{0}\right|$ или $c=k^{2}-$ $-|k|, \lambda_{0}=0(k \in \mathbb{Z})$, паре $\left(\lambda_{0}, c\right)$ соответствует два нетривиальных неприводимьх представления, в остальньх случаях паре (λ_{0}, c) соответствует единственное неприводимое представление. Представления реализуются по формулам

$$
\begin{gathered}
E_{0} e_{k}=\lambda_{k} e_{k}, \quad E_{1} e_{k}=\left(\varphi_{1}\left(\lambda_{k}\right)\right)^{1 / 2} e_{k+(-1)^{k}}, \\
E_{2} e_{k}=\left(\varphi_{2}\left(\lambda_{k}\right)\right)^{1 / 2} e_{k-(-1)^{k}},
\end{gathered}
$$

$$
\varphi_{1}\left(\lambda_{k}\right)=\lambda_{k}^{2}-\lambda_{k}-c, \quad \varphi_{2}\left(\lambda_{k}\right)=\lambda_{k}^{2}+\lambda_{k}-c,
$$

1) npu $c<\lambda_{0}^{2}-\left|\lambda_{0}\right|, \lambda_{0} \neq \pm 1 / 2, k \in \mathbb{Z} ; \lambda_{0}=1 / 2, k=1,2, \ldots, E_{1} e_{1}=$ $= \pm\left(\varphi_{1}(1 / 2)\right)^{1 / 2} e_{1} \quad \lambda_{0}=1 / 2, k=0,1, \ldots, E_{2} e_{0}= \pm\left(\varphi_{2}(-1 / 2)\right)^{1 / 2} e_{0}$;
2) при $c=\lambda_{0}^{2}-\left|\lambda_{0}\right|, k=0,1, \ldots$ или $k=-1,-2, \ldots$ при $\lambda_{0}<0, k=1$, $2, \ldots$ или $k=0,-1, \ldots$ при $\lambda_{0}>0$, и $k=1,2, \ldots$ или $k=-1,-2, \ldots$ при $\lambda_{0}=0$ (в пространстве, натлнутом на e_{0} реализуется тривиальное представление);
3) $n p u \quad c=\left(\lambda_{0}-m\right)^{2}-\left|\left(\lambda_{0}-m\right)\right|, m \in \mathbb{Z} \backslash\{0\}, k=m, m+1, \ldots$ или $k=-m$, - $m-1, \ldots$ ($п р и \quad \lambda_{0}=0, \pm 1 / 2$ оба случал возникают одновременно).
в) Для алгебры R_{3} реализуется следующий случай.

Теорема 4. Все неприводимые представления алгебры R_{3} одномерны и имеют один из видов: $E_{0}=1 / 2, E_{1}= \pm 1, E_{2}=0$ или $E_{0}=E_{1}=E_{2}=0$.

Доказательство. Действительно, поскольку выражение для $\varphi_{1}(\lambda)$ содержит λ_{0}^{2}, а выражение для $\varphi_{2}(\lambda)$. содержит $-\lambda_{0}^{2}$, непосредственные вычисления показывают, что представления могут соответствовать только парам $\lambda_{0}=1 / 2, c=3 / 2$ и $\lambda_{0}=0, c=0$.
1.Склянин Е.K. О некоторых алгебраических структурах, связанных с уравнением Янга-Бакстера // Функцион. анализ и его прил. -1982.-16, вып. 4.-С.27-34.
2.Островский В.Л., Сильвестров С.Д. О представлениях вещественных форм градуированного аналога алгебры Ли $s l(2, \mathbb{C}) / /$ XIV шк. по теории операторов в функциональных пространствах. Тез. докл. Ч.2.- Новгород : Пединститут, 1989.-С. 63.
3. Самойленко Ю.С. Спектральная теория наборов самосопряженных операторов.- Киев: Наук. думка, 1984.-232 с.
4.Островский В.Л. , Самойленко Ю.С. Семейства неограниченных самосопряженых операторов, связанных нелиевскими соотношениями // Функцион. анализ и его прил.-1989.-23, вып.2.-С.67-68.
5.Городний М.Ф., Подколзин Г.Б. Неприводимые представления градуированной алгебры Ли. Спектральная теория операторов и бесконечномерный анализ.- Киев: Ин-т математики АН УССР, 1984. -С.66-77.

Получено 26.06.91

