УДК 517.986

В. Л. Островский, канд. физ.-мат. наук (Ин-т математики АН Украины, Киев), С. Д. Сильвестров, студ. (Киев. ун-т)

ПРЕДСТАВЛЕНИЯ ВЕЩЕСТВЕННЫХ ФОРМ ГРАДУИРОВАННОГО АНАЛОГА АЛГЕБРЫ ЛИ

Описаны вещественные формы \mathbb{Z}_{n}^{n} -градуированного аналога алгебры Ли $sl(2,\mathbb{C})$ и изучены их неприводимые представления.

Описані дійсні форми \mathbb{Z}_2^n -градуйованого аналога алгебри Лі $sl(2,\mathbb{C})$ та вивчені їх незвідні представления.

Развитие теории квантовых физических систем стимулировало интерес к квадратичным алгебрам и их представлениям (см. [1] и др.). Если в квадратичной алгебре введена вещественная структура, естественно рассматривать *-представления соответствующей алгебры.

В настоящей работе изучаются представления вещественных структур в

 \mathbb{Z}_{2}^{n} -градуированном аналоге алгебры Ли $\mathfrak{sl}(2,\mathbb{C})$. Изложенные результаты анонсированы в [2]. **1.** Напомним, что \mathbb{Z}_2^n -градуированная (цветная) алгебра Ли — это \mathbb{Z}_2^n -гра-

дуированное линейное пространство
$$L = \bigoplus_{i \in \mathbb{Z}_2^n} L_i \;, \quad \mathbb{Z}_2^n = \{0, 1\}^n,$$

в котором определена билинейная операция $\langle \cdot, \cdot \rangle$ такая, что для $a \in L_i, b \in$

$$\langle a, b \rangle = c \in L_l$$
, grad $c = \text{grad}a \cdot \text{grad}b$,

$$\langle a, b \rangle = -(-1)^{\sum_r g_r(a)g_r(b)} \langle b, a \rangle.$$

(Здесь grad $u = (g_1(u), \dots, g_n(u))$ — градуировка элемента u, \cdot — операция в \mathbb{Z}_2^n , и выполнено тождество Якоби с учетом соответствующего правила знаков (см., например, [3]).)

В дальнейшем для обозначения операции < , . > будем использовать обозначение $\{a,b\}$ (антикоммутатор), если $\langle a,b\rangle = \langle b,a\rangle$, и [a,b] (коммутатор), если $\langle a, b \rangle = -\langle b, a \rangle$.

Если выбрать n=3 и трехмерное пространство $L=L_{(1,1,0)} \oplus L_{(1,0,1)} \oplus$

 \bullet $L_{(0,1,1)}$ с базисом a_1, a_2, a_3 , то получаем соотношения

$$[a_j, a_j] = 0, \ j = 1, 2, 3,$$

 $\{a_1, a_2\} = c_{12}a_3,$
 $\{a_2, a_3\} = c_{23}a_1,$
 $\{a_1, a_3\} = c_{13}a_2,$ (1)

$$(a_1, a_3) = c_{13}a_2,$$

ссматривается аналог алгебры $sl(2, \mathbb{C})$ — алгебра.

В настоящей работе рассматривается аналог алгебры $sl(2,\mathbb{C})$ — алгебра, полученная из (1) при $c_{12} = c_{23} = c_{13} = 1$ (если в (1) заменить антикоммутаторы коммутаторами, то получим $sl(2, \mathbb{C})$).

В дальнейшем рассматриваем алгебру L вложенной в ее универсальную обертывающую U(L)-ассоциативную алгебру с тремя образующими a_1, a_2, a_3 и соотношениями

© В. Л. ОСТРОВСКИЙ, С. Д. СИЛЬВЕСТРОВ, 1992

 $\in L_{\iota}$ выполняются соотношения

$$a_1a_2 + a_2a_1 = a_3,$$

 $a_2a_3 + a_3a_2 = a_1,$
 $a_3a_1 + a_1a_3 = a_2.$

Поскольку в дальнейшем изучается алгебра U(L), в данной работе считаем изоморфными алгебры L и L', если они порождают изоморфные алгебры U(L) и U(L'). Например, соотношения (2) можно получить с группой \mathbb{Z}_{2}^{n} , отличной от \mathbb{Z}_2^3 (но не \mathbb{Z}_2).

 $\dot{\mathbf{z}}$. Рассмотрим вопросы, связанные с введением в L (соответственно U(L))

Определение 1. Под вещественной структурой в алгебре L понимаем антилинейное отображение (инволюция) $*: L \to L$ такое, что $a^{**} = a$ и

вещественной структуры.

 $\langle a, b \rangle^* = \langle b^*, a^* \rangle$ для любых $a, b \in L$. Инволюция в L единственным образом продолжается до инволюции в ас-

социативной алгебре U(L). Инволюции в L будем считать эквивалентными, если они приводят к изоморфным *-алгебрам U(L).

Утверждение 1. В алгебре L существуют три не эквивалентные инволюции: 1) $a_i^* = a_i$, j = 1, 2, 3; 2) $a_1^* = a_1$, $a_2^* = -a_2$, $a_3^* = -a_3$; 3) $a_1^* = a_1$, $a_2^* = a_3$. Доказательство проводится непосредственно.

Квадратичную алгебру U(L) с i-й инволюцией в дальнейшем обозначим через R_i .

В алгебрах R_i , i = 1, 2, 3, выберем самосопряженные образующие следую-

щим образом: $E_0 = a_1$ во всех R_i ; $E_1 = a_2 + a_3$ в R_1 и R_3 ; $E_1 = i(a_2 + a_3)$ в R_2 ; $E_2 = a_2 - a_3$ в R_1 , $E_2 = i(a_2 - a_3)$ в R_2 и R_3 . Для образующих E_0 , E_1 , E_2 два соотношения имеют вид

$$\{E_0, E_1\} = E_1, \ \{E_0, E_2\} = -E_2,$$
 (3)

общий для всех трех алгебр R_i , а третье соотношение в алгебрах R_1 , R_2 , R_3 соответственно имеет вид

вид
$$E_1^2 - E_2^2 = 2E_0,$$

$$E^2 - E_2^2 = -2E_0$$

$$E_1^2 - E_2^2 = 2E_0,$$

 $E_1^2 - E_2^2 = -2E_0,$

$$E_1^2 - E_2^2 = -2E_0,$$

$$E_1^2 - E_2^2 = -2E_0,$$

$$E_1^2+E_2^2=2E_0.$$
 (3')
 3. Перейдем к изучению *-представлений алгебр R_i – троек самосопряженных операторов E_0, E_1, E_2 в гильбертовом пространстве H , удовлетворяющих

соотношениям (3) и (3'). Поскольку операторы не предполагаются ограниченными, следует выделить класс "интегрируемых" представлений, т.е. указать точный смысл соотношений (3) и (3') для неограниченных
$$E_0, E_1, E_2$$
.

Определение 2. "Интегрируемым" представлением алгебры R; назовем тройку самосопряженных операторов E_0 , E_1 , E_2 , между которыми на плот-

ном в H множестве Φ , состоящем из векторов, целых для операторов E_0 , E_1, E_2 , выполнены соотношения (3) и (3'). Для таким образом определенных операторов E_0 , E_1 , E_2 выполнены соот-

$$E_{E_0}(\Delta)E_1\phi = E_1E_{E_0}(1-\Delta)\phi,$$

 $E_{E_0}(\Delta)E_2\phi = E_2E_{E_0}(-1-\Delta)\phi, \phi \in \Phi,$

(2)

(Разночтений при определении D не возникает, поскольку в силу [4] операторы E_1^2 , E_2^2 коммутируют с E_0 в смысле разложений единицы.) Лемма 1. Оператор D коммутирует с E_0 , E_1 , E_2 в смысле разложения

которые в дальнейшем используются при изучении представлений. Здесь

 $D = E_1^2 + E_0^2 - E_0 = E_2^2 + E_0^2 + E_0,$ $D = -E_1^2 + E_0^2 - E_0 = -E_2^2 + E_0^2 + E_0,$ $D = E_1^2 - E_0^2 + E_0 = -E_2^2 - E_0^2 + 3E_0.$

Рассмотрим самосопряженный оператор D, который в алгебре R_i имеет

 $E_{E_0}(\cdot)$ — разложение единицы самосопряженного оператора E_0 .

соответственно вид

ры E_1 , E_2 коммутируют с E_0 в смысле разложении единицы.)

Лемма 1. Оператор D коммутирует с E_0 , E_1 , E_2 в смысле разложения единицы.

Доказательство. Рассмотрим алгебру R_1 (случаи R_2 и R_3 анало-

Доказательство. Рассмотрим алгебру R_1 (случаи R_2 и R_3 аналогичны). Оператор E_0 коммутирует с D, поскольку он коммутирует с E_1^2 . Так как [4] $E_{E_0}(\Delta)g_{\text{even}}(E_1) = g_{\text{even}}(E_1)E_{E_0}(\Delta),$

$$E_{E_0}(\Delta)g_{\rm odd}(E_1)=g_{\rm odd}(E_1)E_{E_0}(1-\Delta)$$
 для всех измеримых $\Delta\in\mathbb{R}^1$ и всех ограниченных измеримых функций $g_{\rm even}$,

ции f имеем $f(D)g_{\text{even}}(E_1) = \int_{\mathbb{R}^2} f(\lambda_1 + \lambda_0^2 - \lambda_0) dE_{E_1^2}(\lambda_1) dE_{E_0}(\lambda_0) g_{\text{even}}(E_1) = g_{\text{even}}(E_1) f(D),$ $f(D)g_{\text{odd}}(E_1) = \int_{\mathbb{R}^2} f(\lambda_1 + \lambda_0^2 - \lambda_0) dE_{E_1^2}(\lambda_1) dE_{E_0}(\lambda_0) g_{\text{odd}}(E_1) =$ $= g_{\text{odd}}(E_1) \int_{\mathbb{R}^2} f(\lambda_1 + \lambda_0^2 - \lambda_0) dE_{E_2^2}(\lambda_1) dE_{E_0}(1 - \lambda_0) =$

 g_{odd} (g_{even} четная, g_{odd} нечетная), для любой ограниченной измеримой функ-

$$=g_{\rm odd}(E_1)\int_{\mathbb{R}^2}f(\lambda_1+(1-\lambda_0)^2-(1-\lambda_0))dE_{E_1^2}(\lambda_1)dE_{E_0}(\lambda_0)=g_{\rm odd}(E_1)\!f(D).$$
 Таким образом, для любых ограниченных измеримых функций f,g ограниченные операторы $f(D)$ и $g(E_1)$ коммутируют. Аналогично, поскольку

 $f(D)=\int_{\mathbb{R}^2}f(\lambda_2+\lambda_0^2+\lambda_0)dE_{E_2^2}(\lambda_2)dE_{E_0}(\lambda_0),$ то f(D) коммутирует с $g(E_1)$.

то f(D) коммутирует с $g(E_1)$.

4. Изучим общие для всех алгебр R_i свойства неприводимых *-представлений. Изучим предварительно некоторые свойства спектра оператора E_0 . В

лений. Изучим предварительно некоторые свойства спектра оператора E_0 . В силу первых двух соотношений в алгебре $R_i \ \forall \ \Delta \in \mathfrak{B}(\mathbb{R}^1), \ l=1,2,3...$

$$E_{E_0}(\Delta)E_{1,l} = E_{1,l}E_{E_0}(\Delta-1),$$
 $E_{E_0}(\Delta)E_{2,l} = E_{2,l}E_{E_0}(-1-\Delta).$ (4)

(Здесь $E_{i,l} = E_{E_i}[-l, l]E_i$, l = 1, 2.)

Рассмотрим два отображения $F_1(\lambda) = 1 - \lambda$, $F_2(\lambda) = -1 - \lambda$ и динамическую систему (дискретную) на \mathbb{R}^1 , порожденную этими отображениями.

Лемма 2. В неприводимом представлении алгебры R; спектр оператора

 E_0 дискретен и лежит на некоторой орбите динамической системы, порожденной $F_1, F_2.$

Доказательство. Действительно, если $\delta \in \mathfrak{B}(\mathbb{R}^1)$ инвариантно относительно F_1 , F_2 , то оператор $E_{E_0}(\delta)$ коммутирует в силу (4) с E_0 , E_1 , E_2 и поэтому равен 0 или 1. Таким образом, в неприводимом представлении спектральная мера оператора E_0 эргодична относительно действия динамической

системы. Поскольку у данной динамической системы существует измеримое сечение (множество, содержащее по одной точке из каждой орбиты), например, [-1/2, 1/2], то эргодическая мера сосредоточена на одной орбите динамической системы. Таким образом, для описания неприводимых представлений достаточно

доточен на орбите динамической системы, порожденной F_1 , F_2 , проходящей через точку $\lambda_0 \in [-1/2, 1/2]$.

описать неприводимые представлеия, при которых спектр оператора E_0 сосре-

Лемма 3. В неприводимом представлении алгебры R_i спектр оператора

 E_0 npocm. Доказательство. Пусть H_{λ} — собственное подпространство операто-

ра E_0 с собственным значением λ . Поскольку E_0 коммутирует с E_1^2 и E_2^2 , то H_{λ} инвариантно относительно них. Если $H_{\lambda} \neq \mathbb{C}^1$, то существует подпространство $H'_{\lambda} \subset H_{\lambda}$, инвариантное относительно E_1^2 , E_2^2 . Но тогда подпростран-

ство $H' \subset H$, полученное в результате действия на H'_{λ} полугруппы, порожденной E_1 и E_2 , инвариантно и отлично от H. Из соотношений (3) следует, что справедлива следующая лемма.

Лемма 4. Если $e \in H_{\lambda}$, mo: 1) $E_1 e \in H_{1-\lambda}$; 2) $E_2 e \in H_{-1-\lambda}$.

Пусть $\{e_{\lambda}\}$ – собственный базис для оператора E_0 . Тогда

$$E_1 e_{\lambda} = b_1(\lambda) e_{1-\lambda}, \quad E_2 e_{\lambda} = b_2(\lambda) e_{-1-\lambda}.$$
 (5) При этом в силу самосопряженности E_1, E_2

$$b_1(\lambda) = \overline{b_1(1-\lambda)}, \ b_2(\lambda) = \overline{b_2(-1-\lambda)},$$

$$b_1(\lambda) = b_1(1-\lambda), \ b_2(\lambda) = b_2(-1-\lambda),$$

 $E_1^2 e_{\lambda} = |b_1(\lambda)|^2 e_{\lambda}, \ E_2^2 e_{\lambda} = |b_2(\lambda)|^2.$

$$E_1^2 e_{\lambda} = \|b_1(\lambda)\|^2 e_{\lambda}$$
, $E_2^2 e_{\lambda} = \|b_2(\lambda)\|^2$.
В дальнейшем, переходя к унитарно эквивалентному представлению, счи-

таем $b_j(\lambda) \ge 0$, если $F_j(\lambda) \ne \lambda$, и $b_j(\lambda) \in \mathbb{R}^1$, если $F_j(\lambda) = \lambda$, j = 1, 2. Для нахождения $b_i(\lambda)$ воспользуемся леммой 1.

Поскольку в неприводимом представлении D = cI, $c \in \mathbb{R}^1$, то, например,

для алгебры
$$R_1$$

$$b_1^2(\lambda)e_{\lambda}=E_1^2\,e_{\lambda}=(D-E_0^2+E_0)e_{\lambda}=(c-\lambda^2+\lambda)e_{\lambda}=\phi_1(\lambda)e_{\lambda}\,,$$

$$b_{1}^{2}(\lambda)e_{\lambda} = E_{1}^{2}e_{\lambda} = (D - E_{0}^{2} + E_{0})e_{\lambda} = (c - \lambda^{2} + \lambda)e_{\lambda} = \varphi_{1}(\lambda)e_{\lambda},$$

$$b_{2}^{2}(\lambda)e_{\lambda} = E_{2}^{2}e_{\lambda} = (D - E_{0}^{2} - E_{0})e_{\lambda} = (c - \lambda^{2} - \lambda)e_{\lambda} = \varphi_{2}(\lambda)e_{\lambda}.$$
(6)

$$b_2^2(\lambda)e_{\lambda} = E_2^2 e_{\lambda} = (D - E_0^2 - E_0)e_{\lambda} = (c - \lambda^2 - \lambda)e_{\lambda} = \varphi_2(\lambda)e_{\lambda}.$$
 (6)

Аналогично, в алгебре R_2

Аналогично, в алгебре
$$R_2$$

$$b_1^2(\lambda) = \lambda^2 - \lambda - c \equiv \phi_1(\lambda),$$

$$b_1^2(\lambda) = \lambda^2 - \lambda - c \equiv \varphi_1(\lambda),$$

$$b_2^2(\lambda) = \lambda^2 + \lambda - c \equiv \varphi_2(\lambda)$$
(7)

$$b_2^2(\lambda) = \lambda^2 + \lambda - c \equiv \varphi_2(\lambda) \tag{7}$$

ив
$$R_3$$

$$b_1^2(\lambda) = \lambda^2 - \lambda + c \equiv \varphi_1(\lambda),$$

$$b_2^2(\lambda) = -\lambda^2 + 3\lambda - c \equiv \varphi_2(\lambda).$$
 (8)

Лемма 5. Представления, соответствующие различным парам
$$(\lambda_0, c)$$
,

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 11

 $\lambda_0 \in [-1/2, 1/2], c \in \mathbb{R}^1$, унитарно не эквивалентны.

Доказательство. Действительно, параметр $\lambda_0 \in [-1/2, 1/2]$ задает орбиту динамической системы, на которой расположен спектр оператора E_0 , а параметр c определяет действие оператора D, поэтому представления, соответствующие различным парам (λ_0, c) , не эквивалентны.

Замечание 1. Значениям параметра $\lambda_0 = \pm 1/2$ соответствуют случаи, когда отображение F_1 или F_2 имеет неподвижную точку λ_0 . В этом случае $b_1(\lambda_0)$ или $b_2(\lambda_0)$ соответственно определяется с точностью до знака и паре (λ_0,c) может соответствовать два представления.

Найдем условия, при которых паре (λ_0, c) отвечает неприводимое представление R_i , i = 1, 2, 3.

Пусть для пары $(\lambda_0, c), \lambda_0 \in [-1/2, 1/2], c \in \mathbb{R}^1$, существует λ , принадлежащее орбите точки λ_0 , такое что $\phi_1(\lambda) > 0$, но $\phi_1(F_2(\lambda)) < 0$ или $\phi_2(\lambda) > 0$, но $\phi_2(F_1(\lambda)) < 0$ (ϕ_1 и ϕ_2 определяются соответствующими алгебре R_i формулами (6)-(8)). Тогда паре (λ_0, c) не соответствует никакое неприводимое представление алгебры R_i . Действительно, $b_j(\lambda), j=1, 2$, вещественны, а в указанном случае выражение для $b_i^2(\lambda)$ отрицательно.

на собственные пространства H_{λ} , отвечающие собственным значениям $F_1(\lambda)$, $F_2(F_1(\lambda)), F_1(F_2(F_1(\lambda)))...$ и $F_2(\lambda), F_1(F_2(\lambda)), F_2(F_1(F_2(\lambda)))...$ инвариантны.

В случае же, когда $\phi_1(\lambda) = 0$ (или $\phi_2(\lambda) = 0$), подпространства, натянутые

- **Лемма 6.** Паре (λ_0,c) соответствует неприводимое представление, если выполнено одно из условий. 1) Для всех λ , лежащих на орбите O_{λ_0} точки λ_0 , $\phi_j(\lambda) > 0$, j=1,2.
 - 2) Для некоторого $\lambda \in O_{\lambda_0} \varphi_1(\lambda) = 0$, $\varphi_2(\lambda) > 0$ и для всех точек μ
- *maκux*, чтο $\mu \in \Delta_1 = \{F_2(\lambda), F_1(F_2(\lambda)), F_2(F_1(F_2(\lambda)))...\}$ $\phi_j(\mu) > 0, j = 1, 2.$
 - 3) Для некоторого $\lambda \in O_{\lambda_0} \varphi_2(\lambda) = 0$, $\varphi_1(\lambda) > 0$ и $\forall \mu \in \Delta_2 = \{F_1(\lambda), F(F(\lambda)), F(F(\lambda)) = 0, i = 1, 2, \dots, n = 1, 2, \dots \}$
- $F_2(F_1(\lambda)), F_1(F_2(F_1(\lambda))), \dots \} \phi_j(\mu) > 0, \ j = 1, 2.$
- 4) Для некоторого $\lambda \in O_{\lambda_0}$ существует $\lambda' \in O_{\lambda_0}$ такое, что $\phi_j(\lambda) = 0$, $\phi_k(\lambda) > 0$, $\phi_{j'}(\lambda') > 0$, $\phi_k(\lambda') = 0$, $\lambda' = F_{j'}(F_k(\dots F_k(\lambda)\dots))$ и $\forall \mu \in \Delta_1 = \{F_2(\lambda), \phi_j(\lambda') \in$
- $F_1(F_2(\lambda)), \dots, F_1(\lambda')\} \varphi_1(\mu) > 0, \varphi_2(\mu) > 0, j \neq k, j' \neq k'.$

Спектр оператора E_0 — множество O_{λ_0} в случае 1, множество $\Delta \bigcup \lambda$

- в случаях 2, 3, множество $\Delta \bigcup \lambda \bigcup \lambda'$ в случае 4.
- Доказательство. Неприводимость представления следует из того, что спектр оператора E_0 простой, и положительности $\varphi_i(\lambda)$, i = 1, 2. Остальные утверждения итог приведенных выше рассуждений.
- ные утверждения итог приведенных выше рассуждений.

 5. Перейдем к изучению представлений для каждой из алгебр R_i , i = 1, 2, 3.
- 5. Переидем к изучению представлении для каждой из алт сор K_i , i = 1, 2, 3. Отметим, что представления R_1 изучены в [5]. Аналогичное описание получим, пользуясь развитой техникой.
- а) Для алгебры R_1 заметим, прежде всего, что все неприводимые представления конечномерны. Действительно, выражения (6) для $b_1^2(\lambda)$ и $b_2^2(\lambda)$ содержат член $-\lambda^2$ и, следовательно, могут быть положительными лишь для

ственные вычисления показывают, что условия леммы 6 могут быть выполнены только для $\lambda_0 \in \{-1/2, 0, 1/2\}$. Из условий $\phi_1(\lambda_l) = 0$, $\phi_2(\lambda_m) = 0$ получаем $c = \lambda_l^2 - \lambda_l = \lambda_m^2 + \lambda_m$, откуда с учетом $\varphi_2(\lambda_l) > 0$, $\varphi_1(\lambda_m) > 0$ имеем для $\lambda_0 = 0$, l = -m и $c_l = l^2 - |l|$, причем sign $l = (-1)^{l+1}$; размерность представления 2|l| + 1.

конечного числа точек $\mu \in O_{\lambda_0} = \{\lambda_k = (-1)^k (\lambda_0 - k): k \in \mathbb{Z}\}\ (\lambda_0 \in \{-1/2, 1/2\}).$ Таким образом, для R_1 реализуется только случай 4 из леммы 6. Непосред-

При
$$\lambda_0 = 1/2$$
 орбита содержит неподвижную относительно F_1 точку λ_0 . При этом $\lambda_0 = \lambda_1, \lambda_{-1} = \lambda_2, \dots, \lambda_{-k} = \lambda_{k+1}, \dots$ Числу c соответствует неприводимое представление, если $\phi_1(\lambda_l) = 0, \phi_2(\lambda_l) > 0$ или $\phi_1(\lambda_l) > 0, \phi_2(\lambda_l) = 0$. Отсюда $c_l = \lambda_l^2 - |\lambda_l|, l = 1, 2, 3, \dots$; размерность представления l ; паре (λ_0, c)

соответствует два представления, различающихся знаком при $b_1(\lambda_1)$ = $=\pm (\phi_1(\lambda_0))^{1/2}$ (см. замечание 1).

Аналогично, при $\lambda_0 = -1/2$ точка λ_0 неподвижна относительно F_2 , поэтому $\lambda_0 = \lambda_{-1}, \dots, \lambda_k = \lambda_{-k-1}, \dots$. При этом $c_l^2 = \lambda_l^2 - |\lambda_l|, l = 0, 1, 2, \dots$; размерность представления l+1; паре (λ_0, c_l) соответствуют также два неприводимых представления.

ность представления
$$l+1$$
; паре (λ_0,c_l) соответствуют также два неприводимых представления.

Теорема 2 [5]. Все неприводимые представления алгебры R_1 конечномерны. В собственном базисе E_0 они реализуются по формулам

 $E_0 e_k = \lambda_k e_k$, $E_1 e_k = (\phi_1(\lambda_k))^{1/2} e_{k+(-1)^k}$,

$$E_2 e_k = (\phi_2(\lambda_k))^{1/2} e_{k-(-1)^k},$$
 where
$$\varphi_1(\lambda_k) = l^2 - l - \lambda_k^2 + \lambda_k, \quad \phi_2(\lambda_k) = l^2 - l - \lambda_k^2 - \lambda_k,$$

1) dim
$$H = 2l + 1$$
 $(l = 0, 1, 2, ...)$ $k = -l, ..., l, $\lambda_k = (-1)^{k+1}k$;$

1)
$$\dim H = 2i + 1$$
 $(i = 0, 1, 2, ...)$ $k = -i, ..., i, k_k = (-1)$

2) dim
$$H = l + 1$$
 $(l = 0, 1, 2, ..., (-1)^k (-1, 1, 2, -k), k$:

2) dim
$$H = l + 1$$
 $(l = 0, 1, 2, ...)$ $\lambda_k = (-1)^k (-1/2 - k), k = 0, ..., l, u \ npu \ k = 0$

2)
$$\dim H = t + 1$$
 $(t = 0, 1, 2, ...)$ $\lambda_k = (-1)^k (-1/2 - k), k = 0$

$$a = \pm (a (1/2))1/2a$$
:

$$E_2 e_0 = \pm (\varphi_2(-1/2))^{1/2} e_0;$$

$$e_0 = \pm (\varphi_2(-1/2))^{1/2}e_0;$$

$$e_0 = \pm (\varphi_2(-1/2))^{1/2}e_0;$$

$$e_0 = \pm (\varphi_2(-1/2))^{1/2}e_0;$$

$$e_0 = \pm (\varphi_2(-1/2))^{1/2}e_0;$$

$$_{2}e_{0}=\pm (\varphi_{2}(-1/2))^{1/2}e_{0};$$

$$_{2}e_{0} = \pm (\phi_{2}(-1/2))^{1/2}e_{0};$$

3) dim
$$H = l$$
 $(l = 1, 2, ...)$ $\lambda_k = (-1)^k (1/2 - k), k = 1, ..., l, u \ npu \ k = 1 \ E_1 e_1$

3) dim
$$H = l$$
 $(l = 1, 2, ...)$ $\lambda_k = (-1)^k (1/2 - k), k = 1, ..., l, u npu $k = 1$ $E_1 e_1 = 1$$

3) dim
$$H = l$$
 $(l = 1, 2, ...)$ $\lambda_k = (-1)^k (1/2 - k), k = 1, ..., l, u npu $k = 1$ $E_1 e_1$$

3) dim
$$H = l$$
 $(l = 1, 2, ...)$ $\lambda_k = (-1)^k (1/2 - k), k = 1, ..., l, u npu $k = 1$ $E_1 e_1$$

$$= \pm (\varphi_1(1/2))^{1/2}e_1.$$

$$\pm (\varphi_1(1/2))^{1/2}e_1.$$

$$\Gamma(\psi_1(1/2))^{1/2}\epsilon_1$$
.
б) Для алгебры R_2 выражения $\phi_1(\lambda)$ и $\phi_2(\lambda)$ содержат член λ^2 , и

о) для алгеоры
$$\kappa_2$$
 выражения $\phi_1(\kappa)$ и $\phi_2(\kappa)$ содержат член κ^2 , и следовательно, для ее представлений реализуются случаи 1, 2 и 3 теоремы 1

следовательно, для ее представлении реализуются случаи 1, 2 и 3 теоремы 1 (исключение составляет тривиальное представление
$$E_0 = E_1 = E_2 = 0$$
, соответ-

ствующее
$$\lambda_0 = 0$$
, $c = 0$; здесь реализуется случай 4). В отличие от случая R_1 ,

для алгебры
$$R_2$$
 любому значению $\lambda_0 \in [-1/2, 1/2]$ соответствуют неприводимые представления.

димые представления.
При
$$c < \lambda_0^2 - |\lambda_0|$$
 имеем $\omega_1(\lambda) > 0$, $\omega_2(\lambda) > 0$ для всех $\lambda \in O$.

при
$$c < \lambda_0^2 - |\lambda_0|$$
 имеем $\phi_1(\lambda) > 0$, $\phi_2(\lambda) > 0$ для всех $\lambda \in O_{\lambda_0} =$

$$=\{(-1)^k(\lambda_0-k): k\in\mathbb{Z}\},$$
 поэтому реализуется случай 1 из теоремы 1; спектр

оператора E_0 совпадает с O_{λ_0} , а паре (λ_0,c) соответствует единственное неприводимое представление (при $\lambda_0 = \pm 1/2$ — два неприводимых представле-

ния, см. замечание 1). При $c = \lambda_0^2 - |\lambda_0|$ паре (λ_0, c) отвечает два неприводи-

1523

случаи 2 или 3 теоремы 1. При $c > \lambda_0^2 - |\lambda_0|$ неприводимые представления существуют для $c = (\lambda_0 - k)^2 - |(\lambda_0 - k)|$; реализуются случаи 2 или 3 теоремы 1,

мых представления (при $\lambda_0 = 0$, c = 0, третье тривиальное) соответствующие

причем при $\lambda_0 = 0, \pm 1/2$ реализуются оба случая одновременно (паре (λ_0, c) соответствует два неприводимых представления).

Теорема 3. Алгебра R_2 имеет нетривиальные неприводимые представления лишь неограниченными операторами. Представления параметризуются

параметрами $\lambda_0 \in [-1/2, 1/2]$ и $c \in (-\infty, \lambda_0^2 - |\lambda_0|] \cup \{(\lambda_0 - k)^2 - |(\lambda_0 - k)^2|\}$ (-k) |: $k \in \mathbb{Z}$, $k \neq 0$ }, причем при $\lambda_0 = \pm 1/2$ или $c = \lambda_0^2 - |\lambda_0|$ или $c = k^2 - |\lambda_0|$ $-|k|, \lambda_0 = 0 \ (k \in \mathbb{Z}),$ паре (λ_0, c) соответствует два нетривиальных неприводимых представления, в остальных случаях паре (λ_0, c) соответствует

единственное неприводимое представление. Представления реализуются по

 $E_0 e_k = \lambda_k e_k$, $E_1 e_k = (\phi_1(\lambda_k))^{1/2} e_{k+(-1)^k}$,

$$E_2 e_k = (\varphi_2(\lambda_k))^{1/2} e_{k-(-1)^k},$$

$$e \partial e$$

$$\varphi_1(\lambda_k) = \lambda_k^2 - \lambda_k - c, \quad \varphi_2(\lambda_k) = \lambda_k^2 + \lambda_k - c,$$

формулам

YCCP, 1984. -C.66-77.

1)
$$npu \ c < \lambda_0^2 - |\lambda_0|, \lambda_0 \neq \pm 1/2, k \in \mathbb{Z}; \lambda_0 = 1/2, k = 1, 2, ..., E_1 e_1 =$$

$$= \pm (\varphi_1(1/2))^{1/2}e_1 \ \lambda_0 = 1/2, k = 0, 1, ..., E_2e_0 = \pm (\varphi_2(-1/2))^{1/2}e_0;$$

2) $npu \ c = \lambda_0^2 - |\lambda_0|, k = 0, 1, ...$ $unu \ k = -1, -2, ...$ $npu \ \lambda_0 < 0, k = 1,$

2, ... или
$$k=0,-1,\ldots$$
 при $\lambda_0>0,$ и $k=1,2,\ldots$ или $k=-1,-2,\ldots$ при

 $\lambda_0 = 0$ (в пространстве, натянутом на e_0 реализуется тривиальное представление);

3) при
$$c = (\lambda_0 - m)^2 - |(\lambda_0 - m)|$$
, $m \in \mathbb{Z} \setminus \{0\}$, $k = m, m + 1, ...$ или $k = -m, -m - 1, ...$ (при $\lambda_0 = 0, \pm 1/2$ оба случая возникают одновременно).

в) Для алгебры R_3 реализуется следующий случай.

Теорема 4. Все неприводимые представления алгебры R_3 одномерны и

имеют один из видов: $E_0 = 1/2$, $E_1 = \pm 1$, $E_2 = 0$ или $E_0 = E_1 = E_2 = 0$. Доказательство. Действительно, поскольку выражение для $\phi_1(\lambda)$

содержит λ_0^2 , а выражение для $\phi_2(\lambda)$ содержит $-\lambda_0^2$, непосредственные вычисления показывают, что представления могут соответствовать только па-

рам $\lambda_0 = 1/2$, c = 3/2 и $\lambda_0 = 0$, c = 0.

 Склянин Е.К. О некоторых алгебраических структурах, связанных с уравнением Янга-Бакстера // Функцион. анализ и его прил. –1982.–16, вып. 4.–С.27–34. 2. Островский В.Л., Сильвестров С.Д. О представлениях вещественных форм градуированно-

го аналога алгебры Ли sl (2, C) // XIV шк. по теории операторов в функциональных пространствах. Тез. докл. Ч.2.- Новгород: Пединститут, 1989.-С. 63.

3. Самойленко Ю.С. Спектральная теория наборов самосопряженных операторов. - Киев: Наук. думка, 1984.-232 с.

4. Островский В.Л., Самойленко Ю.С. Семейства неограниченных самосопряженых операто-

ров, связанных нелиевскими соотношениями // Функцион. анализ и его прил.-1989.-23, вып.2.-С.67-68.

 Городний М.Ф., Подколзин Г.Б. Неприводимые представления градуированной алгебры Ли. Спектральная теория операторов и бесконечномерный анализ. – Киев: Ин-т математики АН

Получено 26. 06.91

1524 ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 11