УдК 512.546

С. П. Панасюк, ассист. (Киев. ун-т),
С. Р. Султанов, ассист. (Рязан. радиотехн. ин-т)

К ВОПРОСУ О ПОЛНОТЕ ПО ДЬЕДОННЕ ПРОСТРАНСТВ ЗАМКНУТЫХ ПОДМНОЖЕСТВ И ПОДГРУПП

Доказана полнота по Дьедонне пространства замкнутых подмножеств 2^{X} в топологии Вьето-риса-Линделефа или паракомпактного сильно нульмерного пространства X. Изучаются связанные с этим результатом вопросы.
Доведе̨на повнота за Дьедонне простору замкнених піддмножин 2^{X} у топології В'єторіса-Ліндельофа або паракомпактного сильно нульмірного простору X. Вивчаються пов'язані з цим результатом питання.
Результаты данной работы анонсированы в тезисах доклада [1].
Предбазу топологии Вьеториса в пространстве 2^{X} образуют множества

$$
D_{1}(U)=\left\{M \in 2^{X} \mid M \subset U\right\}, \quad D_{2}(V)=\left\{M \in 2^{X} \mid M \cap V \neq \varnothing\right\}
$$

где U и V пробегают открытые подмножества пространства X. Если G - топологическая группа, то множество $\mathfrak{Z}(G)$ замкнутых подгрупп группы G суть замкнутое в 2^{G} подпространство [2]. Все определения из общей топологии см. в монографии [3].

Лемма 1. Пусть X - сильно паракомпактное хаусдорфово пространство, U - открыто-замкнутое подмножество пространства X и $\left\{W_{\alpha}\right\}_{\alpha \in A}$ - покрытие пространства $X \backslash U$ открытыми множествами W_{α}. Тогда семейство $\left\{D_{1}(U), D_{2}\left(W_{\alpha}\right), \alpha \in A\right\}$ - нормальное покрытие пространства 2^{X}.

Доказательство Пространство 2^{X} разбивается на два открыто-замкнутых подмножества $D_{1}(U)$ и $D_{2}(X \backslash U)$. В силу открытости $X \backslash U$ можно считать, что $W_{\alpha} \in X \backslash U$ для всех $\alpha \in A$, поэтому достаточно показать, что покрытие $\left\{D_{2}\left(W_{\alpha}\right)\right\}_{\alpha \in A}$ пространства $D_{2}(X \backslash U)$ нормально.

В покрытие $\left\{W_{\alpha}\right\}_{\alpha \in A}$ пространства $X \backslash U$ можно вписать звездно-конечное открытое покрытие $\left\{V_{\beta, i}^{(1)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$, где индексация выбрана так, чтобы $V_{\beta, i}^{(1)} \cap V_{\gamma, j}^{(1)}=\varnothing$ при $\beta \neq \gamma$ (т. е. $\left\{V_{\beta, i}^{(1)}\right\}_{i \in \mathbb{N}}, \beta$ фиксировано, - компонента $\left\{V_{\beta, i}^{(1)}\right\}_{(\beta, i) \in B \times \mathbb{N}}[3$, с. 483]). Можно считать, что B вполне упорядочено. Достаточно показать•нормальность покрытия $\left\{D_{2}\left(V_{\beta, i}^{(1)}\right)\right\}_{(\beta, i) \in B \times \mathbb{N}}$.
A) Поскольку $X \backslash U$ - паракомпакт, существует комбинаторно вписанное с замыканием в $\left\{V_{\beta, i}^{(1)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$ открытое покрытие $\left\{V_{\beta, i}^{(0)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$ пространства $X \backslash U$ ([3, с. 446], утверждение 5.1.7). Далее, в силу нормальности пространства $X \backslash U$ для любых двоично-рационального $r \in[0,1]$ и $\beta \in B, i \in \mathbb{N}$, можно построить открытое множество $V_{\beta, i}^{(r)}$ такое, что $\bar{V}_{\beta, i}^{\left(r_{1}\right)} \subset V_{\beta, i}^{\left(r_{2}\right)}$ при $r_{1}<r_{2}$ [4, c. 61]. Тогда $\left\{\bar{V}_{\beta, i}^{\left(r_{1}\right)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$ комбинаторно вписано в покрытие $\left\{V_{\beta, i}^{\left(r_{2}\right)}\right\}_{(\beta, z) \in B \times \mathbb{N}}$ пространства $X \backslash U$ при $r_{1}<r_{2}, r_{1}, r_{2} \in[0,1]$ и двоично-рациональны.
В) От покрьттия $\left\{D_{2}\left(V_{\beta, i}^{(1)}\right)\right\}_{(\beta, i) \in B \times \mathbb{N}}$ пространства $D_{2}(X \backslash U)$ переходим к покрытию

$$
\left\{O_{\beta, i}^{(1)}=D_{1}\left(X \backslash \bigcup_{\gamma<\beta,(\gamma=\beta \& i<j)} \bar{V}_{\gamma, j}^{(1 / 2)}\right) \cap D_{2}\left(V_{\beta, i}^{(1)}\right)\right\}_{(\beta, i) \in B \times \mathbb{N}} .
$$

1. Семейство $\left\{O_{\beta, i}^{(1)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$ - открытое покрытие $D_{2}(X \backslash U)$. Пусть $M \in$
$\in D_{2}(X \backslash U)$. Тогда найдется минимальный индекс $(\beta, i) \in B \times \mathbb{N}$ такой, что $M \in D_{2}\left(V_{\beta, i}^{(1 / 2)}\right)$. Отсюда $M \in O_{\beta, i}^{(1)}$. Заметим, что для всех $(\beta, i) \in B \times \mathbb{N}$ $O_{\beta, i}^{(1)}$ открытты в силу локальной конечности $\left\{\bar{\nabla}_{\beta, i}^{(1 / 2)}\right\}_{(\beta, i) \in B \times \mathbb{N}}[3, ~ c .41]$.
2. Покрытие $\left\{O_{\beta, i}^{(1)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$ локально конечно. Зафиксируем $(\beta, i) \in B \times \mathbb{N}$. Множество $V_{\beta, i}^{(1)}$ может пересекаться только с конечным числом множеств $V_{\beta, j_{j}}^{(1)}, l=\overline{1, m}$, из семейства $\left\{V_{\beta, i}^{(1)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$ и, следовательно, может пересекаться только с множествами $V_{\beta, j_{l}}^{(1 / 2)}, l=\overline{1, m}$, из семейства $\left\{V_{\beta, i}^{(1 / 2)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$. Пусть $j_{0}=\max \left(j_{1}, \ldots, j_{m}\right)$. Тогда $O_{\beta, i}^{(1)} \cap O_{\gamma, j}^{(1)}=\varnothing$ при $\gamma \neq \beta$ или $j>j_{0}$. Действительно, если $\gamma<\beta$, то

$$
\left(x \backslash \bigcup_{\delta<\beta,(\delta=\beta \& t<i)} \bar{V}_{\delta, t}^{(1 / 2)}\right) \cap V_{\gamma, j}^{(1)}=\varnothing ;
$$

если $\gamma>\beta$ или $\gamma=\beta$ и $j>j_{0}$, то

$$
\left(x \backslash \bigcup_{\delta<\gamma,(\delta=\gamma \& t<j)} \bar{V}_{\delta, t}^{(1 / 2)}\right) \cap V_{\beta, i}^{(1)}=\varnothing .
$$

(Семейство $\left\{V_{\beta, i}^{(1 / 2)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$ - покрытие $X \backslash U$. Тогда

$$
\left.\bigcup_{i \in \mathbb{N}} V_{\beta, i}^{(1)}=\bigcup_{i \in \mathbb{N}} V_{\beta, i}^{(1 / 2)} \text { и } V_{\beta, i}^{(1)} \subset \bigcup_{l=1}^{m} V_{\beta, j_{i}}^{(1 / 2)} .\right)
$$

C) Аналогично В) для каждого двоично-рационального $r \in(0,1 / 8)$ полагаем

$$
\begin{aligned}
& \left\{\tilde{F}_{\beta, i}^{(r)}=D_{1}\left(X \backslash \bigcup_{\gamma<\beta,(\gamma=\beta \& j<i)} \bar{V}_{\gamma, j}^{(7 / 8-r)}\right) \cap D_{2}\left(\bar{V}_{\beta, i}^{(7 / 8+r)}\right)\right\}_{(\beta, i) \in B \times \mathbb{N}}, \\
& \left\{\mathcal{F}_{\beta, i}^{(r)}=D_{1}\left(X \backslash \bigcup_{\gamma<\beta,(\gamma=\beta \& j<i)} \bar{V}_{\gamma, j}^{(7 / 8-r)}\right) \cap D_{2}\left(V_{\beta, i}^{(7 / 8+r)}\right)\right\}_{(\beta, i) \in B \times \mathbb{N}} .
\end{aligned}
$$

Тогда $\left\{F_{\beta, i}^{(r)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$ - открытое покрытие $D_{2}(X \backslash U)$. Если $r_{1}<r_{2}$, то $\tilde{F}_{\beta, i}^{\left(r_{1}\right)} \subset$ $\subset F_{\beta, i}^{\left(r_{2}\right)}$ для любых двоично-рациональных $r_{1}, r_{2} \in(0,1 / 8)$ и $(\beta, i) \in B \times \mathbb{N}$. Очевидно, $\stackrel{1}{F}_{\beta, i}^{(r)} \subset \stackrel{1}{\tilde{F}_{\beta, i}^{(r)}}$. Заметим, что $\left\{\dot{F}_{\beta, i}^{(r)}\right\}_{(\beta, i) \in B \times \mathrm{N}}$ комбинаторно вписано в $\left\{O_{\beta, i}^{(1)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$ для любого $r \in(0,1 / 8)$. Значит, $\left\{F_{\beta, i}^{(r)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$ и $\left\{\frac{1}{F_{\beta, i}^{(r)}}\right\}_{(\beta, i) \in B \times \mathbb{N}}$, соответственно, открытое и замкнутое локально конечные покрытия пространства $D_{2}(X \backslash U)$.
D) Пусть для натурального n указан интервал $I_{n}=\left(0,1 / 2^{2 n+1}\right)$ и для каждого двоично-рационального $r \in I_{n}$ построены множества $\stackrel{\sim}{F}_{\beta, i}^{(r)}$ и $\stackrel{n}{F}_{\beta, i}^{(r)}$ для всех $(\beta, i) \in B \times \mathbb{N}$ таким образом, что $\left\{{\underset{F}{\beta, i}}_{n}^{(r)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$ открытое, а $\left\{\tilde{F}_{\beta, i}^{(r)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$ - замкнутое локально конечные покрытия $D_{2}(X \backslash U)$; из $r_{1}<r_{2}$ следует $F_{\beta, i}^{\left(r_{1}\right)} \subset \tilde{F}_{\beta, i}^{\left(r_{1}\right)} \subset F_{\beta, i}^{\left(r_{2}\right)}$ для любых двоично-рациональных $r_{1}, r_{2} \in I_{n}$ и $(\beta, i) \in B \times \mathbb{N}$. Пусть построено также локально конечное открытое покрытие $\left\{O_{\beta, i}^{(n)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$ пространства $D_{2}(X \backslash U)$, звездно вписанное в $\left\{O_{\beta, i}^{(n-1)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$,

если $n>1$, и для каждого двоично-рационального $r \in I_{n}\left\{\tilde{F}_{\beta, i}^{(r)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$ комбинаторно вписано в $\left\{O_{\beta, i}^{(n)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$. Зафиксируем локально конечное замкнутое покрыттие $\left\{\tilde{F}_{\beta, i}^{\left(1 / 2^{2 n+2}\right)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$, полагая $I_{n+1}=\left(0,1 / 2^{2(n+1)+1}\right)$, и для всех $(\beta, i) \in B \times \mathbb{N}$, следуя ([3, с. 449], утверждение 5.1.13), определяем покрытия

$$
\begin{align*}
& \left\{O_{\beta, i}^{(n+1)}=\left(\bigcap_{l=1}^{k} O_{\beta, j_{l}}^{(n)}\right) \bigcup_{(\gamma, j) \neq\left(\beta, j_{l}\right), l=1, k} \bigcup_{\underset{\gamma}{n}}^{n}\left(1 / 2^{2 n+2}\right)\right\}_{(\beta, i) \in B \times \mathbb{N}}, \tag{1}\\
& \left\{\begin{array}{l}
n+l \\
\tilde{F}_{\beta, i}(r)
\end{array}=\left(\bigcap_{l=1}^{k} \tilde{F}_{\beta, j_{l}}^{\left(3 / 2^{2 n+3}+r\right)}\right) \backslash_{(\gamma, j) \neq\left(\beta, j_{l}\right), l=\overline{1, k}}{\underset{F}{\gamma, j}}_{\left(3 / 2^{2 n+3}-r\right)}^{\}}\right\}_{(\beta, i) \in B \times \mathbb{N}}, \tag{2}
\end{align*}
$$

(по второму индексу идет перенумерация, которая, в силу комбинаторной вписанности одинакова во всех трех случаях) для любых двоично-рациональных $r \in I_{n+1}$. Формулы (1) - (3) следует понимать так, что берутся всевозможные конечные наборы $O_{\beta, j_{l}}^{(n)}\left(\stackrel{n}{F}_{\beta, j_{l}}, \stackrel{n}{F} \beta, j_{l}\right)$, у которых одинаково β, а затем строятся их пересечения и $O_{\beta, i}^{(n+1)}\left(\stackrel{n}{F}_{\beta, i}, \stackrel{n+1}{F}_{\beta, i}\right)$ (некоторые $O_{\beta, i}^{(n+1)}\left(\stackrel{n}{F}_{\beta, i}, \stackrel{n+1}{F}{ }_{\beta, i}\right)$ могут быть пустыми множествами).

Пусть $r_{1}, r_{2} \in I_{n+1}$ и $r_{1}<r_{2}$, тогда $3 / 2^{2 n+3}+r_{p}, 3 / 2^{2 n+3}-r_{p} \in I_{n}$ при $p=1,2$ и

$$
\begin{gathered}
\stackrel{n}{F}_{\beta, i}^{\left(3 / 2^{2 n+3}+r_{1}\right)} \subset \stackrel{n}{F}_{\beta, i}^{\left(3 / 2^{2 n+3}+r_{1}\right)} \subset \stackrel{n}{F}_{\beta, i}^{\left(3 / 2^{2 n+3}+r_{2}\right)} \subset O_{\beta, i}^{(n)}, \\
\stackrel{n}{F}_{\beta, i}^{\left(1 / 2^{2 n+2}\right)} \subset \stackrel{n}{F}_{\beta, i}^{\left(3 / 2^{2 n+3}-r_{2}\right)} \subset \stackrel{n}{F}_{\beta, i}^{\left(3 / 2^{2 n+3}-r_{2}\right)} \subset \stackrel{n}{F}_{\beta, i}^{\left(3 / 2^{2 n+3}-n\right)} .
\end{gathered}
$$

Отсюда $\stackrel{n+1\left(r_{1}\right)}{F} \underset{\beta, i}{\stackrel{n+1}{F}\left(r_{1}\right)} \subset \stackrel{n+1}{F}{ }_{\beta, i}^{\left(r_{2}\right)} \subset O_{\beta, i}^{(n+1)}$. Для любого $r \in I_{n+1}$ покрытие (3) (а тогда и (2), и (1)) определяет покрытие пространства $D_{2}(X \backslash U)$ в силу точечной конечности $\left\{\tilde{F}_{\beta, i}^{\left(3 / 2^{2 n+3}-r\right)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$. Поскольку $\left\{O_{\beta, i}^{(n)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$ локально конечное, то покрытие (1) (а тогда и (2), и (3)) локально конечное. Заметим, что (2) замкнутое, а (1) и (3) - открытые покрытия пространства $D_{2}(X \backslash U)$.
E) Пусть M - произвольный элемент пространства $D_{2}(X \backslash U)$. Тогда найдется $\left(\beta, j_{0}\right) \in B \times \mathbb{N}$ такой, что $M \in \stackrel{n}{F}_{\beta, j_{0}}^{\left(1 / 2^{2 n+2}\right)}$, следовательно, если $M \in$ $O_{\beta, i}^{(n+1)}$, то $O_{\beta, i}^{(n+1)} \subset O_{\beta, j_{0}}^{(n)}$, т.e. st $\left(M,\left\{O_{\beta, i}^{(n+1)}\right\}_{(\beta, i) \in B \times \mathbb{N}}\right) \subset O_{\beta, j_{0}}^{(n)}$, и $\left\{O_{\beta, i}^{(n+1)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$ звездно вписано в покрытие $\left\{O_{\beta, i}^{(n)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$.

Имеем $\left\{O_{\beta, i}^{(1)}\right\}_{(\beta, i) \in B \times \mathbb{N}},\left\{O_{\beta, i}^{(2)}\right\}_{(\beta, i) \in B \times \mathbb{N}}, \ldots$ - последовательность открытых покрытий пространства $D_{2}(X \backslash U)$, в которой каждое покрытие, начиная со второго, звездно вписано в предыдущее. В силу утверждения 5.1 .15 из [3, c. 450] $\left\{O_{\beta, i}^{(1)}\right\}_{(\beta, i) \in B \times \mathbb{N}}$ - нормальное покрытие $D_{2}(X \backslash U)$. Лемма доказана.

Лемма 2. Пусть X - линделефово пространство, $U^{(0)}$ и $U^{(1)}$ - от-

крытые подмножества X, для которых $\bar{U}^{(0)} \subset U^{(1)} . E с л и \quad\left\{W_{\alpha}\right\}_{\alpha \in A}-$ произвольное открытое покрытие $X \backslash U^{(0)}$ ($_{\alpha}$-открытые подмножества X для всех $\alpha \in A$), то в семейство $\left\{D_{1}\left(U^{(1)}\right), D_{2}\left(W_{\alpha}\right), \alpha \in A\right\}$ можно вписать счетное нормальное покрытие пространства 2^{X}.

Доказательство. Таккак X - сильно паракомпактное хаусдорфово пространство, то в открытое покрытие $\left\{U^{(0)}, W_{\alpha}, \alpha \in A\right\}$ пространства X можно вписать счетное локально конеч́ное открытое покрытие $\left\{U^{(0)}, V_{i}^{(1)}, i \in \mathbb{N}\right\}$. B $\left\{V_{i}^{(1)}\right\}_{i \in \mathbb{N}}$ можно вписатъ комбинаторно с замыканием семейство открытых подмножеств $\left\{V_{i}^{(0)}\right\}_{i \in \mathbb{N}}$, покрывающее $X \backslash U^{(0)}$. В силу нормальности пространства X для каждого двоично-рационального $r \in[0,1]$ и любого $i \in \in \mathbb{N}$ найдутся открытые покрытия $U_{i}^{(r)}$ и $V_{i}^{(r)}$ такие, что при $r<r^{\prime} \quad \bar{U}_{i}^{(r)} \subset U_{i}^{\left(r^{\prime}\right)}$, $\bar{V}_{i}^{(r)} \subset V_{i}^{\left(r^{\prime}\right)}$. Очевидно, для любого двоично-рационального $r \in[0,1)\left\{\bar{V}_{i}^{(r)}\right\}_{i \in \mathbb{N}}$ - покрытие $X \backslash U^{(0)}$, комбинаторно вписанное в $\left\{V_{i}^{\left(r^{\prime}\right)}\right\}_{i \in \mathbb{N}}$ при $r<r^{\prime}$.
А) Семейство $\left\{D_{1}\left(U^{(1)}\right), D_{2}\left(V_{i}^{(1)}\right), i \in \mathbb{N}\right\}$ - покрытие пространства 2^{X}, вписанное в открытое покрытие $\left\{D_{1}\left(U^{(1)}\right), D_{2}\left(W_{\alpha}\right), \alpha \in A\right\}$. Для каждого $i \in \mathbb{N}$ положим

$$
O_{i}^{(1)}=D_{2}\left(V_{i}^{(1)}\right) \cap D_{1}\left(X \backslash \bigcup_{j<i} \bar{V}_{j}^{(0)}\right) \cap D_{2}\left(X \backslash \bar{U}^{(0)}\right), \text { a } O_{0}^{(1)}=D_{1}\left(U^{(1)}\right)
$$

Тогда $\left\{O_{i}^{(1)}\right\}_{i=0}^{\infty}$ - открытое локально конечное покрыттие пространства 2^{X}, вписанное в $\left\{D_{1}\left(U^{(1)}\right), D_{2}\left(V_{i}^{(1)}\right), i \in \mathbb{N}\right\}$. Действительно, если $M \notin D_{1}\left(U^{(1)}\right)$, то найдется минимальный индекс i_{0} такой, что $M \cap V_{i_{0}}^{(1)} \neq \varnothing$, тогда $M \in O_{i_{0}}^{(1)}$, следовательно, $\left\{O_{i}^{(1)}\right\}_{i \in \mathbb{N}}$ - покрытие 2^{X}. Оно открытое в силу локальной конечности семейства $\left\{\bar{V}_{i}^{(0)}\right\}_{i \in \mathbb{N}}$. Пусть M - произвольная точка пространства 2^{X}. Если $M \in D_{1}\left(U^{(0)}\right)$, то $D_{1}\left(U^{(0)}\right) \cap O_{i}^{(1)}=\varnothing$ при $i>0$, а при $M \notin D_{1}\left(U^{(0)}\right)$, полагая j_{0} минимальным индексом таким, что $M \cap V_{j_{0}}^{(0)} \neq \varnothing$, получаем $D_{2}\left(V_{j_{0}}^{(0)}\right) \cap O_{j}^{(1)}=\varnothing$ при $j>j_{0}$, т. е. покрытие $\left\{O_{i}^{(1)}\right\}_{i=0}^{\infty}$ локально конечно.
В) Для каждого двоично-рационального $r \in(0,1 / 8)$ и $i \in \mathbb{N}$ определяем

$$
\stackrel{1}{F}_{i}^{(r)}=D_{2}\left(\bar{V}_{i}^{(7 / 8+r)}\right) \cap D_{1}\left(X \backslash \bigcup_{j<i} V_{j}^{(7 / 8-r)}\right) \cap D_{2}\left(X \backslash U^{(7 / 8-r)}\right), \stackrel{1}{F_{0}^{(r)}}=D_{1}\left(\bar{U}^{(7 / 8+r)}\right)
$$

$$
\stackrel{1}{F_{i}^{(r)}}=D_{2}\left(V_{i}^{(7 / 8+r)}\right) \cap D_{1}\left(X \backslash \bigcup_{j<i} \bar{V}_{j}^{(7 / 8-r)}\right) \cap D_{2}\left(X \backslash \bar{U}^{(7 / 8-r)}\right), \quad \stackrel{1}{F_{0}^{(r)}}=D_{1}\left(U^{(7 / 8+r)}\right)
$$

Тогда нетрудно проверить, что для любых двоично-рациональных $r_{1}, r_{2} \in(0,1 / 8)$ и любого $i=\overline{0, \infty}$ при $r_{1}<r_{2}$

$$
\stackrel{1}{F}_{i}^{\left(r_{1}\right)} \subset{F_{i}^{1}}_{\left(r_{2}\right)}^{)_{i}^{\left(r_{2}\right)} \subset O_{i}^{(1)}, ~}
$$

и $\left\{\frac{1}{F_{i}}\left(r_{1}\right)\right\}_{i=0}^{\infty}$ замкнутое, а $\left\{\frac{1}{F_{i}^{\left(r_{1}\right)}}\right\}_{i=0}^{\infty}$ - открытое локально конечные покрытия пространства 2^{X}.
C) Применяя пункты D и E доказательства леммы 1, завершаем доказательство леммы 2.

Лемма 3. Пусть для произвольного замкнутого подмножества N и любьхх открытьх подмножеств $U^{(0)}$ и $U^{(1)}$ нормального пространства X таких, что $N \subset U^{(0)} \subset \bar{U}^{(0)} \subset U^{(1)}$, и произвольного открытого покрытия
$\left\{W_{\alpha}\right\}_{\alpha \in A}$ множества $X \backslash U^{(0)}$ открытое покрытие $\left\{D_{1}\left(U^{(1)}\right), D_{2}\left(W_{\alpha}\right), \alpha \in A\right\}$ пространства 2^{X} нормально. Тогда 2^{X} полно по Дьедонне.

Доказательство. Пусть \mathcal{F} - фильтр Коши на 2^{X} в универсальной равномерности. Тогда для любого нормального покрытия $\left\{O_{s}\right\}_{s \in S}$ пространства 2^{X} найдется $s \in S$ такое, что $O_{s} \in \mathcal{F}$.
А) Полагаем $N=U^{(0)}=U^{(1)}=\varnothing$. Обозначим $N_{0}=\left\{x \in X \mid D_{2}\left(V_{x}\right) \in \mathcal{F}\right.$ для каждого открытого $\left.V_{x} \ni x\right\}$. Тогда $N_{0} \neq \varnothing$. В противном случае для каждого $x \in X$ найдется открытое W_{x} такое, что $D_{2}\left(W_{x}\right) \notin \mathcal{F}$, но по условию леммы $\left\{D_{2}\left(W_{x}\right)\right\}_{x \in X}$ - нормальное покрытие 2^{X}. Получили противоречие.
В) Заметим, что N_{0} замкнуто, и положим $N=N_{0}$. Для любого $x \in X \backslash U^{(0)}$ найдем открытое покрытие $W_{x} \ni x$ такое, что $D_{2}\left(W_{x}\right) \notin \mathcal{F}$. Поскольку покрытие $\left\{D_{1}\left(U^{(1)}\right), D_{2}\left(W_{x}\right), x \in X \backslash U^{(0)}\right\}$ нормально, то $D_{1}\left(U^{(1)}\right) \in \mathcal{F}$. Но тогда любая окрестность $D_{1}\left(U^{(1)}\right) \cap D_{2}\left(W_{1}\right) \cap \ldots \cap D_{2}\left(W_{n}\right)$ элемента N_{0} в 2^{X} принадлежит \mathcal{F}, следовательно, $N_{0} \in \lim \mathfrak{F}$. Лемма доказана.

Заметим, что если X - паракомпактное сильно нульмерное пространство, то X сильно паракомпактно ввиду [3, с. 588], и для любого замкнутого подмножества N и любого открыгого $U \supset N$ найдется открыто-замкнутое подмножество $U^{(0)}$ такое, что $N \subset U^{(0)} \subset U[3$, с. 530]. Тогда, применяя леммы 1,2 и 3 , получаем следующую теорему.

Теорема. Если X-паракомпактное сильно нульмерное или линделефово пространство, то 2^{X} полно по Дьедонне в топологии Вьеториса.

Следствие 1. Если G - локально компактная σ-компактная или нульмерная группа, то $\mathfrak{Z}(G)$ полно по Дьедонне.

Доказательство. Если группа $G \sigma$-компактна, то она линделефова. Если группа G нульмерна, то G - паракомпакт ([5, с. 104], утверждение 8.13), следовательно, G - сильно нульмерное пространство ([3, с. 568], утверждение 7.1.12). Тогда $\mathfrak{Z}(G)$ полно по Дьедонне как замкнутое подпространство пространства 2^{G}.

Следствие 2. Пусть G - локально компактная группа. Тогда если пространство $\mathfrak{L}(G)$ псевдокомпактно, то $\mathfrak{~}(G)$ компактно.

Доказательство. Пусть G_{0} - компонента единицы группы G, тогда группа G / G_{0} вполне несвязна, и следовательно, нульмернаं [5, с. 25]. В силу следствия 1 покрыттие $\mathscr{~}\left(G / G_{0}\right)$ полно по Дьедонне. Поскольку $\mathscr{(}\left(G / G_{0}\right)$ является непрерывным образом $\mathfrak{\mathscr { L }}(G)$ ([6], лемма), то $\mathfrak{~}\left(G / G_{0}\right)$ псевдокомпактно, а тогда и компактно в силу ([3], с. 678). Следовательно, $G / G_{0} \sigma$-компактна ([2] теорема 4), и так как группа $G_{0} \sigma$-компактна, то группа $G \sigma$-компактна. Ввиду следствия 1 покрытие $\mathscr{L}(G)$ полно по Дьедонне, и следовательно, компактно.

1. Панасюк С. П., Султанов С. Р. О полноте по Дьедонне пространств замкнутых подмножеств и подгрупп // XIX Всесоюзная алгебраическая конференция. Тезисы сообщений. Часть вторая. - Львов. - 1987. - С. 214-215.
2. Протасов И. В. Топологические группы с компактной решеткой замкнутых подгрупп // Сиб. мат. журн. - 1979. - 20, № 2. - С. 378-385.
3. Энгелькинг Р. Общая топология. - М.: Мир, 1986. - 752 с.
4. Александров П. С., Пасынков Б. А. Введение в теорию размерности.- М.: Наука, 1973.- 546 с.
5. Хьюитт Э., Росс K. Абстрактный гармонический анализ: В 2-х т.- М.: Наука, 1975.-T.1.656 c .
6. Панасюк С. П. Метризуемость в пространстве подгрупп группы Ли // Укр. мат. журн. 1990. - 42, № 3. - C. 351 - 355.
