С. П. Панасюк, ассист. (Киев. ун-т),

С. Р. Султанов, ассист. (Рязан. радиотехн. ин-т)

К ВОПРОСУ О ПОЛНОТЕ ПО ДЬЕДОННЕ ПРОСТРАНСТВ ЗАМКНУТЫХ ПОДМНОЖЕСТВ И ПОДГРУПП

Доказана полнота по Дьедонне пространства замкнутых подмножеств 2^x в топологии Вьеториса-Линделефа или паракомпактного сильно нульмерного пространства Х. Изучаются связанные с этим результатом вопросы.

Доведена повнота за Дьедонне простору замкнених підмножин 2^X у топології В'єторіса–Ліндельофа або паракомпактного сильно нульмірного простору X. Вивчаються пов'язані з цим результатом питання.

Результаты данной работы анонсированы в тезисах доклада [1]. Предбазу топологии Вьеториса в пространстве 2^X образуют множества

$$D_1(U)=\{M\in 2^X\,|\, M\subset U\},\ \ D_2(V)=\{M\in 2^X\,|\, M\cap V\neq\varnothing\},$$
 где U и V пробегают открытые подмножества пространства X . Если G — то-

пологическая группа, то множество $\mathfrak{X}(G)$ замкнутых подгрупп группы Gсуть замкнутое в 2^G подпространство [2]. Все определения из общей топологии см. в монографии [3].

Лемма 1. Пусть X - сильно паракомпактное хаусдорфово пространство, U — открыто-замкнутое подмножество пространства X и $\{W_{\alpha}\}_{\alpha\in A}$ — покрытие пространства $X \setminus U$ открытыми множествами W_{α} . Тогда семейство $\{D_1(U), D_2(W_\alpha), \alpha \in A\}$ – нормальное покрытие пространства 2^X .

Доказательство Пространство 2^X разбивается на два открыто-замкнутых подмножества $D_1(U)$ и $D_2(X \setminus U)$. В силу открытости $X \setminus U$ можно считать, что $W_{\alpha} \in X \setminus U$ для всех $\alpha \in A$, поэтому достаточно показать, что

покрытие $\{D_2(W_\alpha)\}_{\alpha\in A}$ пространства $D_2(X\setminus U)$ нормально. В покрытие $\{W_{\alpha}\}_{\alpha\in A}$ пространства $X\setminus U$ можно вписать звездно-конечное открытое покрытие $\{V_{\beta,i}^{(1)}\}_{(\beta,\ i)\in B imes N}$, где индексация выбрана так, чтобы

 $V_{\beta,i}^{(1)} \cap V_{\gamma,j}^{(1)} = \emptyset$ при $\beta \neq \gamma$ (т. е. $\{V_{\beta,i}^{(1)}\}_{i \in \mathbb{N}}, \beta$ фиксировано, – компонента $\{V_{B,i}^{(1)}\}_{(\beta,i)\in B\times \mathbb{N}}$ [3, с. 483]). Можно считать, что В вполне упорядочено. Достаточно показать нормальность покрытия $\{D_2(V_{\beta,i}^{(1)})\}_{(\beta,i)\in B\times \mathbb{N}}$.

- А) Поскольку $X \setminus U$ паракомпакт, существует комбинаторно вписанное с замыканием в $\{V_{\beta,i}^{(1)}\}_{(\beta,\ i)\in B\times \mathbb{N}}$ открытое покрытие $\{V_{\beta,i}^{(0)}\}_{(\beta,\ i)\in B\times \mathbb{N}}$ пространства $X \setminus U$ ([3, с. 446], утверждение 5.1.7). Далее, в силу нормальности пространства $X \setminus U$ для любых двоично-рационального $r \in [0, 1]$ и β ∈ B, i ∈ N, можно построить открытое множество $V_{\beta,i}^{(r)}$ такое, что $\overline{V}_{\beta,i}^{(r_1)} \subset V_{\beta,i}^{(r_2)}$ при $r_1 < r_2$ [4, с. 61]. Тогда $\{\overline{V}_{\beta,i}^{(r_1)}\}_{(\beta,i)\in B\times \mathbb{N}}$ комбинаторно вписано в покрытие $\{V_{\beta,i}^{(r_2)}\}_{(\beta,i)\in B\times \mathbb{N}}$ пространства $X \setminus U$ при $r_1 < r_2, r_1, r_2 \in [0, 1]$ и двоично-рациональны.
- В) От покрытия $\{D_2(V_{\beta,i}^{(1)})\}_{(\beta,i)\in B\times \mathbb{N}}$ пространства $D_2(X\setminus U)$ переходим к покрытию

$$\left\{O_{\beta,i}^{(1)} = D_1\left(X \setminus \bigcup_{\gamma < \beta, (\gamma = \beta \& i < j)} \overline{V}_{\gamma,j}^{(1/2)}\right) \cap D_2(V_{\beta,i}^{(1)})\right\}_{(\beta, i) \in B \times \mathbb{N}}.$$

1. Семейство $\{O_{\beta,i}^{(1)}\}_{(\beta,\,i)\in B\times \mathbb{N}}$ — открытое покрытие $D_2(X\setminus U)$. Пусть $M\in$

 $(X \setminus \bigcup_{\delta < \beta, (\delta = \beta \& t < i)} \overline{V}_{\delta,t}^{(1/2)}) \cap V_{\gamma,j}^{(1)} = \emptyset;$ если $\gamma > \beta$ или $\gamma = \beta$ и $j > j_0$, то $\left(X \setminus \bigcup_{\delta < \gamma, (\delta = \gamma \ \& \ t < j)} \overline{V}_{\delta, t}^{(1/2)}\right) \cap V_{\beta, i}^{(1)} \ = \ \varnothing.$ (Семейство , $\{V_{\beta,i}^{(1/2)}\}_{(\beta,i)\in B\times \mathbb{N}}$ — покрытие $X\setminus U$. Тогда

 $\in D_2(X \setminus U)$. Тогда найдется минимальный индекс $(\beta, i) \in B \times \mathbb{N}$ такой, что $M \in D_2(V_{\beta,i}^{(1/2)})$. Отсюда $M \in O_{\beta,i}^{(1)}$. Заметим, что для всех $(\beta, i) \in B \times \mathbb{N}$

2. Покрытие $\{O_{\beta,i}^{(1)}\}_{(\beta,i)\in B\times \mathbb{N}}$ локально конечно. Зафиксируем $(\beta,i)\in B\times \mathbb{N}$. Множество $V_{eta,i}^{(1)}$ может пересекаться только с конечным числом множеств $V_{\beta,j}^{(1)}, l=\overline{1,m}$, из семейства $\{V_{\beta,i}^{(1)}\}_{(\beta,i)\in B\times \mathbb{N}}$ и, следовательно, может пересекаться только с множествами $V_{\beta,j_l}^{(1/2)}, l=\overline{1,m}$, из семейства $\{V_{\beta,i}^{(1/2)}\}_{(\beta,\ i)\in B\times \mathbb{N}}$. Пусть $j_0 = \max \ (j_1, \dots, j_m)$. Тогда $O_{\beta,i}^{(1)} \cap O_{\gamma,j}^{(1)} = \emptyset$ при $\gamma \neq \beta$ или $j > j_0$. Действительно,

 $O_{\beta,i}^{(1)}$ открыты в силу локальной конечности $\{\overline{V}_{\beta,i}^{(1/2)}\}_{(\beta,i)\in B\times \mathbb{N}}$ [3, с. 41].

 $\bigcup_{i\in\mathbb{N}}V_{\beta,i}^{(1)}=\bigcup_{i\in\mathbb{N}}V_{\beta,i}^{(1/2)}$ и $V_{\beta,i}^{(1)}\subset\bigcup_{l=1}^{m}V_{\beta,i}^{(1/2)}.$) С) Аналогично В) для каждого двоично-рационального $r \in (0, 1/8)$ полагаем

 $\Big\{\bar{\tilde{F}}_{\beta,i}^{1(r)} = D_1\Big(X \setminus \bigcup_{\gamma < \beta, (\gamma = \beta \& j < i)} \overline{V}_{\gamma,j}^{(7/8-r)}\Big) \cap D_2(\overline{V}_{\beta,i}^{(7/8+r)})\Big\}_{(\beta, i) \in B \times \mathbb{N}},$

$$\Big\{ F_{\beta,i}^{1(r)} = D_1 \Big(X \setminus \bigcup_{\gamma < \beta, (\gamma = \beta \ \& \ j < i)} \overline{V}_{\gamma,j}^{(7/8-r)} \Big) \cap D_2 (V_{\beta,i}^{(7/8+r)}) \Big\}_{(\beta, \ i) \in B \times \mathbb{N}}.$$
 Тогда $\{ F_{\beta,i}^{1(r)} \}_{(\beta, \ i) \in B \times \mathbb{N}}$ — открытое покрытие $D_2(X \setminus U)$. Если $r_1 < r_2$, то $\widetilde{F}_{\beta,i}^{1(r_1)} \subset F_{\beta,i}^{1(r_2)}$ иля пробых промино-рациональных $r_1 < r_2 \in (0, 1/8)$ и $(\beta, i) \in B \times \mathbb{N}$

 $\subset F_{\beta,i}^{(r_2)}$ для любых двоично-рациональных $r_1, r_2 \in (0, 1/8)$ и $(\beta, i) \in B \times \mathbb{N}$. Очевидно, $\vec{F}_{\beta,i}^{(r)} \subset \tilde{\vec{F}}_{\beta,i}^{(r)}$. Заметим, что $\{\vec{F}_{\beta,i}^{(r)}\}_{(\beta,\ i)\in B\times \mathbb{N}}$ комбинаторно вписано в $\{O_{\beta,i}^{(1)}\}_{(\beta,\,i)\in B\times\mathbb{N}}$ для любого $r\in(0,\,1/8)$. Значит, $\{\dot{F}_{\beta,i}^{(r)}\}_{(\beta,\,i)\in B\times\mathbb{N}}$ и $\{\dot{F}_{\beta,i}^{(r)}\}_{(\beta,i)\in B\times\mathbb{N}}$,

соответственно, открытое и замкнутое локально конечные покрытия пространства $D_2(X \setminus U)$. D) Пусть для натурального n указан интервал $I_n = (0, 1/2^{2n+1})$ и для каж-

дого двоично-рационального $r \in I_n$ построены множества $\overset{n}{F}_{\beta,i}^{(r)}$ и $\overset{n}{F}_{\beta,i}^{(r)}$ для

всех $(\beta, i) \in B \times \mathbb{N}$ таким образом, что $\{F_{\beta,i}^{n}\}_{(\beta,i)\in B\times \mathbb{N}}$ открытое, а $\{\ddot{\tilde{F}}_{\beta,i}^{(r)}\}_{(\beta,\ i)\in B imes \mathbb{N}}$ — замкнутое локально конечные покрытия $D_2(X\setminus U)$; из $r_1 < r_2$

следует $F_{\beta,i}^{n(r_1)} \subset \tilde{F}_{\beta,i}^{n(r_2)} \subset F_{\beta,i}^{n(r_2)}$ для любых двоично-рациональных $r_1, r_2 \in I_n$ и $(\beta, i) \in B \times \mathbb{N}$. Пусть построено также локально конечное открытое покрытие

 $\{O_{\beta,i}^{(n)}\}_{(\beta,i)\in B\times \mathbb{N}}$ пространства $D_2(X\setminus U)$, звездно вписанное в $\{O_{\beta,i}^{(n-1)}\}_{(\beta,i)\in B\times \mathbb{N}}$, ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 11

если $\gamma < \beta$, то

бинаторно вписано в $\{O_{\beta,i}^{(n)}\}_{(\beta,\ i)\in B imes \mathbb{N}}$. Зафиксируем локально конечное замкнутое покрытие $\left\{F_{\beta,i}^{\ell(1/2^{2n+2})}\right\}_{(\beta,\,i)\in\mathcal{B}\times\mathbb{N}}$, полагая $I_{n+1}=\left(0,1/2^{2(n+1)+1}\right)$, и для всех $(\beta, i) \in B \times \mathbb{N}$, следуя ([3, с. 449], утверждение 5.1.13), определяем покрытия

 $\left\{O_{\beta,i}^{(n+1)} = \left(\bigcap_{l=1}^k O_{\beta,j_l}^{(n)}\right) \setminus \bigcup_{(\gamma,j)\neq(\beta,j_l), l=\overline{1,k}} \prod_{j=1,k}^{n\left(1/2^{2n+2}\right)}\right\}_{(\beta,i)\in B\times\mathbb{N}},$

 $\left\{ \tilde{\tilde{F}}_{\beta,i}^{(r)} = \left(\bigcap_{l=1}^k \tilde{F}_{\beta,j_l}^{\left(3/2^{2n+3}+r\right)} \right) \setminus \bigcup_{(\gamma,j)\neq(\beta,j_l), l=\overline{1,k}} F_{\gamma,j}^{\left(3/2^{2n+3}-r\right)} \right\}_{(\beta,\,i)\in B\times\mathbb{N}},$

(по второму индексу идет перенумерация, которая, в силу комбинаторной впи-

 $\left\{ \begin{matrix} r+1 \\ F_{\beta,i}^{(r)} = \left(\bigcap_{l=1}^{k} F_{\beta,j_{l}}^{n \left(3/2^{2n+3} + r \right)} \right) \\ \bigvee_{(\gamma,j) \neq (\beta,j_{l}), l = \overline{1,k}} \frac{n \left(3/2^{2n+3} - r \right)}{F_{\gamma,j}} \right\} \right\}$

если n>1, и для каждого двоично-рационального $r\in I_n$ $\{\tilde{F}_{\beta,i}^{(r)}\}_{(\beta,i)\in B\times \mathbb{N}}$ ком-

санности одинакова во всех трех случаях) для любых двоично-рациональных
$$r \in I_{n+1}$$
. Формулы $(1) - (3)$ следует понимать так, что берутся всевозможные конечные наборы $O_{\beta,j_l}^{(n)} \binom{n}{F} \beta_{,j_l}, \stackrel{n}{F} \beta_{,j_l}, \stackrel{n}{F} \beta_{,j_l}$, у которых одинаково β , а затем строятся их пересечения и $O_{\beta,i}^{(n+1)} \binom{n+1}{F} \binom{n+1}$

Отсюда $\overset{n+1}{F}_{\beta,i}^{(r_1)} \subset \overset{n\pm 1}{F}_{\beta,i}^{(r_1)} \subset \overset{n+1}{F}_{\beta,i}^{(r_2)} \subset O_{\beta,i}^{(n+1)}$. Для любого $r \in I_{n+1}$ покрытие (3) (а тогда и (2), и (1)) определяет покрытие пространства $D_2(X \setminus U)$ в силу точечной конечности $\left\{ \tilde{\tilde{F}}_{0}^{n}(3/2^{2n+3}-r) \right\}$ $\left\{ igcap_{(eta,\,i)\in B imes N} \right\}$. Поскольку $\{O_{eta,\,i}^{(n)}\}_{(eta,\,i)\in B imes N}$ локально

 $\frac{n^{\left(1/2^{2n+2}\right)}}{\tilde{F}_{\beta,i}} \subset F_{\beta,i}^{\left(3/2^{2n+3}-r_2\right)} \subset \tilde{F}_{\beta,i}^{\left(3/2^{2n+3}-r_2\right)} \subset F_{\beta,i}^{\left(3/2^{2n+3}-r_1\right)}.$

конечное, то покрытие (1) (а тогда и (2), и (3)) локально конечное. Заметим,

что (2) замкнутое, а (1) и (3) – открытые покрытия пространства $D_2(X \setminus U)$.

Е) Пусть M — произвольный элемент пространства $D_2(X \setminus U)$. Тогда

найдется $(\beta,j_0) \in B \times \mathbb{N}$ такой, что $M \in \overset{\underline{a}}{F}_{\beta,j_0}^{(1/2^{2n+2})}$, следовательно, если $M \in O_{\beta,i}^{(n+1)}$, то $O_{\beta,i}^{(n+1)} \subset O_{\beta,j_0}^{(n)}$, т.е. st $(M,\{O_{\beta,i}^{(n+1)}\}_{(\beta,i)\in B\times \mathbb{N}}) \subset O_{\beta,j_0}^{(n)}$, и $\{O_{\beta,i}^{(n+1)}\}_{(\beta,i)\in B\times \mathbb{N}}$

звездно вписано в покрытие $\{O_{\beta,i}^{(n)}\}_{(\beta,i)\in B\times \mathbb{N}}$. Имеем $\{O_{\beta,i}^{(1)}\}_{(\beta,\ i)\in B\times \mathbb{N}}, \{O_{\beta,i}^{(2)}\}_{(\beta,\ i)\in B\times \mathbb{N}}, \dots$ — последовательность открытых покрытий пространства $D_2(X \setminus U)$, в которой каждое покрытие, начиная со

второго, звездно вписано в предыдущее. В силу утверждения 5.1.15 из [3, с. 450] $\{O_{\beta,i}^{(1)}\}_{(\beta,i)\in B\times \mathbb{N}}$ — нормальное покрытие $D_2(X\setminus U)$. Лемма доказана.

Лемма 2. Пусть X — линделефово пространство, $U^{(0)}$ и $U^{(1)}$ — от-ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 11

(1)

(2)

(3)

В $\{V_i^{(1)}\}_{i\in\mathbb{N}}$ можно вписать комбинаторно с замыканием семейство открытых подмножеств $\{V_i^{(0)}\}_{i\in\mathbb{N}}$, покрывающее $X\setminus U^{(0)}$. В силу нормальности пространства X для каждого двоично-рационального $r \in [0,1]$ и любого $i \in \mathbb{N}$ найдутся открытые покрытия $U_i^{(r)}$ и $V_i^{(r)}$ такие, что при r < r' $\overline{U}_i^{(r)} \subset U_i^{(r')}$,

Доказательство. Так как Х — сильно паракомпактное хаусдорфово пространство, то в открытое покрытие $\{U^{(0)}, W_{\alpha}, \alpha \in A\}$ пространства X можно вписать счетное локально конечное открытое покрытие $\{U^{(0)}, V_i^{(1)}, i \in \mathbb{N}\}$.

крытые подмножества X, для которых $\overline{U}^{(0)} \subset U^{(1)}$. Если $\{W_{\alpha}\}_{\alpha \in A}$ произвольное открытое покрытие $X \setminus U^{(0)}$ (W_{α} – открытые подмножества Xдля всех $\alpha \in A$), то в семейство $\{D_1(U^{(1)}), D_2(W_\alpha), \alpha \in A\}$ можно вписать

счетное нормальное покрытие пространства 2X.

 $\overline{V}_i^{(r)} \subset V_i^{(r')}$. Очевидно, для любого двоично-рационального $r \in [0,1)$ $\{\overline{V}_i^{(r)}\}_{i \in \mathbb{N}}$ — покрытие $X \setminus U^{(0)}$, комбинаторно вписанное в $\{V_i^{(r')}\}_{i \in \mathbb{N}}$ при r < r'. А) Семейство $\{D_1(U^{(1)}), D_2(V_i^{(1)}), i \in \mathbb{N}\}$ – покрытие пространства 2^X , впи-

санное в открытое покрытие $\{D_1(U^{(1)}), D_2(W_\alpha), \alpha \in A\}$. Для каждого $i \in \mathbb{N}$

 $O_i^{(1)} = D_2(V_i^{(1)}) \cap D_1(X \setminus \bigcup_{j \le i} \overline{V}_j^{(0)}) \cap D_2(X \setminus \overline{U}^{(0)}), \quad \text{a} \quad O_0^{(1)} = D_1(U^{(1)}).$ Тогда $\{O_i^{(1)}\}_{i=0}^{\infty}$ – открытое локально конечное покрытие пространства 2^X ,

вписанное в $\{D_1(U^{(1)}), D_2(V_i^{(1)}), i \in \mathbb{N}\}$. Действительно, если $M \notin D_1(U^{(1)})$, то найдется минимальный индекс i_0 такой, что $M \cap V_{i_0}^{(1)} \neq \emptyset$, тогда $M \in O_{i_0}^{(1)}$, следовательно, $\{O_i^{(1)}\}_{i\in\mathbb{N}}$ – покрытие 2^X . Оно открытое в силу локальной ко-

нечности семейства $\{\overline{V}_i^{(0)}\}_{i\in\mathbb{N}}$. Пусть M – произвольная точка пространства 2^X . Если $M \in D_1(U^{(0)})$, то $D_1(U^{(0)}) \cap O_i^{(1)} = \emptyset$ при i > 0, а при $M \notin D_1(U^{(0)})$,

полагая j_0 минимальным индексом таким, что $M \cap V_{j_0}^{(0)} \neq \emptyset$, получаем $D_2(V_{i_0}^{(0)}) \cap O_i^{(1)} = \emptyset$ при $j > j_0$, т. е. покрытие $\{O_i^{(1)}\}_{i=0}^{\infty}$ локально конечно. В) Для каждого двоично-рационального $r \in (0, 1/8)$ и $i \in \mathbb{N}$ определяем

 $\dot{\bar{F}}_i^{(r)} = D_2(\overline{V}_i^{(7/8+r)}) \cap D_1(X \setminus \bigcup_{j < i} V_j^{(7/8-r)}) \cap D_2(X \setminus U^{(7/8-r)}), \ \dot{\bar{F}}_0^{(r)} = D_1(\overline{U}^{(7/8+r)})$

 $\bar{F}_i^{(r)} = D_2(V_i^{(7/8+r)}) \cap D_1(X \setminus \bigcup_{j < i} \overline{V}_j^{(7/8-r)}) \cap D_2(X \setminus \overline{U}^{(7/8-r)}), \ \bar{F}_0^{(r)} = D_1(U^{(7/8+r)}).$ Тогда нетрудно проверить, что для любых двоично-рациональных $r_1, r_2 \in (0, 1/8)$ и любого $i = \overline{0,\infty}$ при $r_1 < r_2$ $\vec{F}_i^{(r_1)} \subset \vec{F}_i^{(r_2)} \subset \vec{F}_i^{(r_2)} \subset O_i^{(1)},$

и $\left\{\vec{F}_{i}^{(r_{i})}\right\}_{i=0}^{\infty}$ замкнутое, а $\left\{\vec{F}_{i}^{(r_{i})}\right\}_{i=0}^{\infty}$ — открытое локально конечные покрытия

пространства 2^X . С) Применяя пункты D и E доказательства леммы 1, завершаем доказательство леммы 2.

Лемма 3. Пусть для произвольного замкнутого подмножества N и любых открытых подмножеств $U^{(0)}$ и $U^{(1)}$ нормального пространства X таких,

что $N \subset U^{(0)} \subset \overline{U}^{(0)} \subset U^{(1)}$, и произвольного открытого покрытия 1528

 $x \in X$ найдется открытое W_x такое, что $D_2(W_x) \notin \mathcal{F}$, но по условию леммы $\{D_2(W_x)\}_{x\in Y}$ — нормальное покрытие 2^X . Получили противоречие. В) Заметим, что N_0 замкнуто, и положим $N = N_0$. Для любого $x \in X \setminus U^{(0)}$ найдем открытое покрытие $W_x \ni x$ такое, что $D_2(W_x) \notin \mathcal{F}$. Поскольку покры-

 $\{W_{\alpha}\}_{\alpha\in A}$ множества $X\setminus U^{(0)}$ открытое покрытие $\{D_1(U^{(1)}),D_2(W_{\alpha}),\alpha\in A\}$

Доказательство. Пусть \mathcal{F} — фильтр Коши на 2^X в универсальной равномерности. Тогда для любого нормального покрытия $\{O_s\}_{s\in S}$ пространст-

А) Полагаем $N = U^{(0)} = U^{(1)} = \emptyset$. Обозначим $N_0 = \{x \in X \mid D_2(V_x) \in \mathcal{F} \mid J_2(V_x)\}$ каждого открытого $V_x \ni x$. Тогда $N_0 \ne \emptyset$. В противном случае для каждого

пространства 2^X нормально. Тогда 2^X полно по Дьедонне.

ва 2^X найдется $s \in S$ такое, что $O_s \in \mathcal{F}$.

тие $\{D_1(U^{(1)}), D_2(W_x), x \in X \setminus U^{(0)}\}$ нормально, то $D_1(U^{(1)}) \in \mathcal{F}$. Но тогда любая окрестность $D_1(U^{(1)}) \cap D_2(W_1) \cap ... \cap D_2(W_n)$ элемента N_0 в 2^X принадлежит \mathcal{F} , следовательно, $N_0 \in \lim \mathcal{F}$. Лемма доказана.

Заметим, что если X — паракомпактное сильно нульмерное пространство, то Х сильно паракомпактно ввиду [3, с. 588], и для любого замкнутого подмножества N и любого открытого $U \supset N$ найдется открыто-замкнутое под-

множество $U^{(0)}$ такое, что $N \subset U^{(0)} \subset U$ [3, с. 530]. Тогда, применяя леммы 1, 2 и 3, получаем следующую теорему. **Теорема.** Если X – паракомпактное сильно нульмерное или линделефово пространство, то 2^X полно по Дьедонне в топологии Вьеториса.

Следствие 1. Если G — локально компактная о-компактная или нульмерная группа, то $\mathfrak{Z}(G)$ полно по Дьедонне. Доказательство. Если группа G σ -компактна, то она линделефова.

Если группа G нульмерна, то G — паракомпакт ([5, с. 104], утверждение 8.13), следовательно, G — сильно нульмерное пространство ([3, c. 568], утверждение 7.1.12). Тогда $\mathfrak{Z}(G)$ полно по Дьедонне как замкнутое подпространство прост-

ранства 2^G . Следствие 2. Пусть G — локально компактная группа. Тогда если прост-

ранство $\mathfrak{Z}(G)$ псевдокомпактно, то $\mathfrak{Z}(G)$ компактно.

Доказательство. Пусть G_0 — компонента единицы группы G, тогда

группа G/G_0 вполне несвязна, и следовательно, нульмерна [5, с. 25]. В силу

следствия 1 покрытие $\mathfrak{Z}(G/G_0)$ полно по Дьедонне. Поскольку $\mathfrak{Z}(G/G_0)$ является непрерывным образом $\mathfrak{X}(G)$ ([6], лемма), то $\mathfrak{X}(G/G_0)$ псевдокомпактно,

а тогда и компактно в силу ([3], с. 678). Следовательно, G/G_0 σ -компактна ([2]) теорема 4), и так как группа G_0 σ -компактна, то группа G σ -компактна. Ввиду

следствия 1 покрытие $\mathfrak{Z}(G)$ полно по Дьедонне, и следовательно, компактно.

1. Панасюк С. П., Султанов С. Р. О полноте по Дьедонне пространств замкнутых подмножеств и подгрупп // X I X Всесоюзная алгебраическая конференция. Тезисы сообщений. Часть вторая. – Львов. – 1987. – С. 214 – 215.

Протасов И. В. Топологические группы с компактной решеткой замкнутых подгрупп // Сиб. мат. журн. – 1979. – 20, № 2. – С. 378 – 385.
Энгелькинг Р. Общая топология. – М.: Мир, 1986. – 752 с.
Александров П. С., Пасынков Б. А. Введение в теорию размерности. – М.: Наука, 1973. – 546 с.
Хыоштт Э., Росс К. Абстрактный гармонический анализ: В 2-х т. – М.: Наука, 1975. – Т.1. –

6. Панасюк С. П. Метризуемость в пространстве подгрупп группы Ли // Укр. мат. журн. -1990. - 42, Nº 3. - C. 351 - 355. Получено 16.05.91

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 11