АВТОМОРФИЗМ ГЕОМЕТРИИ ГРУППЫ $\boldsymbol{B}_{2}\left(2^{n}\right)$ КАК ПОЛИНОМИАЛЬНОЕ ОТОБРАЖЕНИЕ

Приведено построение автоморфизма геометрии группы $B_{2}\left(2^{n}\right)$ как продолжение автоморфизма системы корней. Доказаны некоторые свойства этого автоморфизма.
Наведена побудова автоморфізму геометрії групи $B_{2}\left(2^{n}\right)$ як продовження автоморфізму системи коренів. Доведені деякі властивості цього автоморфізму.

Класс систем инцидентности, ныне известных как геометрии Титса, введен в конце 50-х годов. В настоящей статье используется конструкция "накрытия" геометрии группы Вейля, сопоставляющая геометрию произвольной системе корней. Геометрии ранга 2 из этого класса могут быть конечными обобщенными m-угольниками при $m=3,4,6$ (системы корней A_{2}, B_{2}, G_{2}). Построение такой конструкции описано в [1,2].

Пусть Ф - неприводимая система корней. Элементы дуального пространства α_{i}^{*} являются линейными функциями на $\Phi\left(\alpha_{i} \in \Phi\right)$. Пусть $W-$ группа Вейля данной системы корней Ф. Под $l(x)^{w}$, где $l(x)$-линейная на Ф функция, $w \in W$, будем понимать $l(w(x))$. Рассмотрим орбиты H_{i} группы W на множестве линейных на Φ функций, содержащие α_{i}^{*}. Пусть $H=\bigcup H_{i}$, задана типовая функция $t(a)=i \Leftrightarrow a \in H_{i}$ и отношение инцидентности $a, b \in H$ aIb \Leftrightarrow $\Leftrightarrow a(x) b(x) \geq 0 \forall x \in \Phi$.

Известно, что заданная таким образом система инцидентности (H, I, t) изоморфна геометрии группы Вейля $\Gamma(W, S)$, т.е. множеству смежных классов группы W по максимальным стандартным подгруппам с отношением инцидентности $\alpha I \beta \Leftrightarrow \alpha \cap \beta \neq$. Доказательство этого факта можно найти, например, в [3].

В случае системы корней B_{2} имеется две орбиты группы Вейля

$$
H_{1}=\left\{l_{1}, l_{2}, l_{3}, l_{4}\right\} \text { и } H_{2}=\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\}
$$

где $l_{1}=\alpha_{1}^{*}, l_{2}=\alpha_{2}^{*}-\alpha_{1}^{*}, l_{3}=\alpha_{1}^{*}-\alpha_{2}^{*}, l_{4}=-\alpha_{1}^{*}$ и $h_{1}=\alpha_{2}^{*}, h_{2}=2 \alpha_{1}^{*}-\alpha_{2}^{*}, h_{3}=\alpha_{2}^{*}-$ $-2 \alpha_{1}^{*}, h_{4}=-\alpha_{2}^{*}, \alpha_{1}, \alpha_{2} \in B_{2}^{+}$.

Определим множества $\eta^{ \pm}\left(l_{i}\right)=\left\{\alpha_{k} \in B_{2}^{+} \mid l_{i}\left(\alpha_{k}\right) \gtrless 0\right\}, o\left(l_{i}\right)=\left\{\alpha_{k} \in B_{2}^{+} \mid l_{i}\left(\alpha_{k}\right)=\right.$ $=0\}, i=\overline{1,4}$, и аналогичным образом множества $\eta^{+}\left(h_{i}\right), \eta^{-}\left(h_{i}\right), o\left(h_{i}\right), i=\overline{1,4}$.

Отношение инцидентности I между $l_{i}, i=\overline{1,4}, h_{j}, j=\overline{1,4}$, можно задать условием

$$
l_{i} I h_{j} \Leftrightarrow\left|\eta^{+}\left(l_{i}\right) \cap \eta^{-}\left(h_{j}\right)\right|+\left|\eta^{-}\left(l_{i}\right) \cap \eta^{+}\left(h_{j}\right)\right|=0
$$

На множестве корней B_{2} существует автоморфизм второго порядка, связанный с графом [4], обозначаемый далее ω. На B_{2}^{+}он действует следующим образом: $\omega\left(\alpha_{1}\right)=\alpha_{2}, \omega\left(\alpha_{2}\right)=\alpha_{1}, \omega\left(\alpha_{3}\right)=\alpha_{4}, \omega\left(\alpha_{4}\right)=\alpha_{3}$, где $\alpha_{3}=\alpha_{1}+\alpha_{2}, \alpha_{4}=$ $\alpha_{1}+2 \alpha_{2}$, Автоморфизм ω может быть продлен на элементы орбит H_{1}, H_{2} : $\omega\left(h_{i}\right)=l_{i}, \omega\left(l_{i}\right)=h_{i}, i=\overline{1,4}$. Рассмотрим накрытие $\tilde{\Gamma}(W, S)$ системы инцидентно-

сти Г(W, S). Пусть задано корневое разложение алгебры Ли, соответствующей простой группе $B_{2}\left(2^{n}\right): L=L^{-}+H+L^{+}$, где $L^{-}=\sum_{\alpha \in \Phi^{-}} L_{\alpha}, L^{+}=\sum_{\alpha \in \Phi^{+}} L_{\alpha}, H$ - подалгебра Картана, L_{α} - корневое подпространство. Эта алгебра является аналогом комплексной алгебры Ли $B_{2}(\mathbb{C})$, определенным над $F_{q}\left(q=2^{n}\right)$ с помощью базиса Шевалле. Геометрия группы $G=B_{2}\left(F_{q}\right)$ является совокупностью смежных классов по стандартным параболическим подгруппам P_{1} и P_{2}. Из результатов работы [4] вытекает, что G / P_{1} можно отождествить с элементами $l+\bar{x}$, где $l \in H_{1}$ и \bar{x} принадлежит некоторому зависящему от l подпространству L^{+}, а G / P_{2} можно отождествить с $h+\bar{y}$, где $h \in H_{2}$ и \bar{y} также принадлежит некоторому зависящему от h подпространству L^{+}. По построению элементы $h \in H_{i}, i=1,2$, являются элементами алгебры Картана.

Тогда накрытие $\tilde{\Gamma}(W, S)$ системы инцидентности $\Gamma(W, S)$ содержит пары

$$
\left(l_{i}, \sum_{\alpha_{k} \in \eta^{-}\left(l_{i}\right)} x_{k} \alpha_{k}\right),\left(h_{i}, \sum_{\alpha_{k} \in \eta^{-}\left(h_{i}\right)} y_{k} \alpha_{k}\right), x_{k}, y_{k} \in F_{2^{n}}, i=\overline{1,4},
$$

с отношением инцидентности \tilde{I} :

$$
\left(l_{i}, \sum_{\alpha_{k} \in \eta^{-}\left(l_{i}\right)} x_{k} \alpha_{k}\right) \tilde{I}\left(h_{j}, \sum_{\alpha_{k} \in \eta^{-}\left(h_{j}\right)} y_{k} \alpha_{k}\right) \Leftrightarrow
$$

i) $l_{i} I h_{j}$;
ii) $\left[l_{i}+\sum_{\alpha_{k} \in \eta^{-}\left(l_{i}\right)} x_{k} \alpha_{k}, h_{j}+\sum_{\alpha_{k} \in \eta^{-}\left(h_{j}\right)} y_{k} \alpha_{k}\right]=0$,
[,] - умножение в алгебре Ли L.
Условие ii) соответствует условию (2) работы [2, с.387].
Исходя из этих условий, отношение инцидентности элементов системы $\tilde{\Gamma}(W, S)$ определяется табл. 1 ("+" означает инцидентность без дополнительных условий, "-" - неинцидентность элементов).

Табл. 1

	$\left(h_{1}, 0\right)$	$\left(h_{2}, y_{2} \alpha_{2}\right)$	$\left(h_{3}, y_{1} \alpha_{1}+y_{3} \alpha_{3}\right)$	$\left(h_{4}, y_{2} \alpha_{2}+y_{3} \alpha_{3}+y_{4} \alpha_{4}\right)$
$\left(l_{1}, 0\right)$	+	+	-	-
$\left(l_{2}, x_{1} \alpha_{1}\right)$	+	-	$x_{1}=y_{1}$	-
$\left(l_{3}, x_{2} \alpha_{2}+x_{4} \alpha_{4}\right)$	-	$x_{2}=y_{2}$	-	$x_{2}=y_{2}$
$\left(l_{4}, x_{1} \alpha_{1}+x_{3} \alpha_{3}+\right.$	-	-	$x_{1}=y_{1}$	$x_{2} y_{3}=x_{4}+y_{4}$
$\left.+x_{4} \alpha_{4}\right)$	-	-	$x_{3}+y_{3}=x_{1} y_{2}$	

Продолжим автоморфизм ω на систему $\tilde{\Gamma}(W, S)$.
Теорема. Отображение ω, заданное равенствами

$$
\begin{aligned}
& \omega\left(l_{1}, 0\right)=\left(h_{1}, 0\right), \omega\left(l_{2}, x_{1} \alpha_{1}\right)=\left(h_{2}, x_{1} \alpha_{2}\right), \\
& \omega\left(h_{1}, 0\right)=\left(l_{1}, 0\right), \omega\left(h_{2}, y_{2} \alpha_{2}\right)=\left(l_{2}, y_{2}^{2} \alpha_{1}\right), \\
& \omega\left(l_{3}, x_{2} \alpha_{2}+x_{4} \alpha_{4}\right)=\left(h_{3}, x_{2}^{2} \alpha_{1}+x_{4} \alpha_{3}\right), \\
& \omega\left(h_{3}, y_{1} \alpha_{1}+y_{3} \alpha_{3}\right)=\left(l_{3}, y_{1} \alpha_{2}+y_{3}^{2} \alpha_{4}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \omega\left(l_{4}, x_{1} \alpha_{1}+x_{3} \alpha_{3}+x_{4} \alpha_{4}\right)=\left(h_{4}, x_{1} \alpha_{2}+x_{4} \alpha_{3}+\left(x_{3}^{2}+x_{1} x_{4}\right) \alpha_{4}\right), \\
& \omega\left(h_{4}, y_{2} \alpha_{2}+y_{3} \alpha_{3}+y_{4} \alpha_{4}\right)=\left(l_{4}, y_{2}^{2} \alpha_{1}+\left(y_{4}+y_{2} y_{3}\right) \alpha_{3}+y_{3}^{2} \alpha_{4}\right),
\end{aligned}
$$

есть автоморфизм порядка $2 n$ геометрии группы $B_{2}\left(2^{n}\right)$.
Доказательство. Заметим, что заданное таким образом отображение является автоморфизмом, если оно сохраняет отношение инцидентности и биективно. Проверим сохранение отношений инцидентности для образов всех попарно инцидентных элементов из табл.1.

Для элементов ($l_{1}, 0$) и ($h_{1}, 0$) это, очевидно, справедливо. Легко заметить, что для образов $\left(h_{1}, 0\right),\left(l_{2}, y_{2}^{2} \alpha_{1}\right)$ инцидентной пары $\left(l_{1}, 0\right),\left(h_{2}, y_{2} \alpha_{2}\right)$ также сохраняется отношение инцидентности. Совершенно аналогично сохраняется отношение инцидентности и для образов пары ($h_{1}, 0$), ($l_{2}, x_{1} \alpha_{1}$). Рассмотрим пару $\left(l_{3}, x_{2} \alpha_{2}+x_{4} \alpha_{4}\right),\left(h_{2}, y_{2} \alpha_{2}\right)$. Для нее условие инцидентности задается равенством $x_{2}=y_{2}$, а для образов этой пары $\left(l_{2}, y_{2}^{2} \alpha_{1}\right),\left(h_{3}, x_{2}^{2} \alpha_{1}+x_{4} \alpha_{3}\right)$ условие инцидентности задается равенством $x_{2}^{2}=y_{2}^{2}$. В поле характеристики 2 эти условия равносильны. Для пары $\left(l_{2}, x_{1} \alpha_{1}\right),\left(h_{3}, y_{1} \alpha_{1}+y_{3} \alpha_{3}\right)$ условие инцидентности $x_{1}=y_{1}$ является также условием инцидентности их образов (h_{2}, $x_{1} \alpha_{2}$) и ($l_{3}, y_{1} \alpha_{2}+y_{3}^{2} \alpha_{4}$). В случае пары ($l_{3}, x_{2} \alpha_{2}+x_{4} \alpha_{4}$), ($h_{4}, y_{2} \alpha_{2}+y_{3} \alpha_{3}+$ $+y_{4} \alpha_{4}$) условия инцидентности задаются системой

$$
\begin{gather*}
x_{2}=y_{2} \\
x_{2} y_{3}=x_{4}+y_{4} \tag{1}
\end{gather*}
$$

Легко убедиться, что в поле $F_{2^{n}}$ система (1) равносильна системе

$$
\begin{gather*}
x_{2}^{2}=y_{2}^{2}, \\
y_{4}+y_{2} y_{3}=x_{4}, \tag{2}
\end{gather*}
$$

задающей условия инцидентности для

$$
\begin{gathered}
\omega\left(l_{3}, x_{2} \alpha_{2}+x_{4} \alpha_{4}\right)=\left(h_{3}, x_{2}^{2} \alpha_{1}+x_{4} \alpha_{3}\right), \\
\omega\left(h_{4}, y_{2} \alpha_{2}+y_{3} \alpha_{3}+y_{4} \alpha_{4}\right)=\left(l_{4}, y_{2}^{2} \alpha_{1}+\left(y_{4}+y_{2} y_{3}\right) \alpha_{3}+y_{3}^{2} \alpha_{4}\right) .
\end{gathered}
$$

Элементы $\left(l_{4}, x_{1} \alpha_{1}+x_{3} \alpha_{3}+x_{4} \alpha_{4}\right),\left(h_{3}, y_{1} \alpha_{1}+y_{3} \alpha_{3}\right)$ инцидентны при

$$
x_{1}=y_{1}, \quad x_{3}=y_{3} .
$$

Домножим первое равенство системы на x_{4} и прибавим ко второму, возведенному в квадрат, получим

$$
\begin{align*}
x_{1} & =y_{1} \\
x_{3}^{2}+x_{1} x_{4} & =y_{3}^{2}+y_{1} x_{4} \tag{3}
\end{align*}
$$

В поле $F_{2^{n}}\left(\operatorname{char} F_{2^{n}}=2\right)$ систему (3) можно записать в виде

$$
\begin{gather*}
x_{1}=y_{1} \\
x_{3}^{2}+x_{1} x_{4}+y_{3}^{2}=y_{1} x_{4} \tag{4}
\end{gather*}
$$

Система (4) представляет собой условия инцидентности образов

$$
\begin{gathered}
\omega\left(l_{4}, x_{1} \alpha_{1}+x_{3} \alpha_{3}+x_{4} \alpha_{4}\right)=\left(h_{4}, x_{1} \alpha_{2}+x_{4} \alpha_{3}+\left(x_{3}^{2}+x_{1} x_{4}\right) \alpha_{4}\right), \\
\omega\left(h_{3}, y_{1} \alpha_{1}+y_{3} \alpha_{3}\right)=\left(l_{3}, y_{1} \alpha_{2}+y_{3}^{2} \alpha_{4}\right) .
\end{gathered}
$$

Условия инцидентности элементов $\left(l_{4}, x_{1} \alpha_{1}+x_{3} \alpha_{3}+x_{4} \alpha_{4}\right),\left(h_{4}, y_{2} \alpha_{2}+y_{3} \alpha_{3}+\right.$ $\left.+y_{4} \alpha_{4}\right)$ задаются системой

$$
\begin{aligned}
& x_{3}+y_{3}=x_{1} y_{2} \\
& x_{4}+y_{4}=x_{3} y_{2}
\end{aligned}
$$

Умножим первое равенство системы на y_{2} и заменим $x_{3} y_{2}$ на сумму $x_{4}+y_{4}$ из второго равенства, имеем

$$
\begin{equation*}
x_{4}+y_{4}+y_{2} y_{3}=x_{1} y_{2}^{2} \tag{5}
\end{equation*}
$$

Возведем первое равенство в квадрат и прибавим к обеим сторонам $x_{1} x_{4}: x_{3}^{2}+$ $+x_{1} x_{4}+y_{3}^{2}=x_{1}\left(x_{1} y_{2}^{2}+x_{4}\right)$. Заменим $x_{1} y_{2}^{2}$ на соответствующее значение из равенства (5). Таким образом, учитывая, что $\operatorname{char} F_{2^{n}}=2$, получаем систему

$$
\begin{gathered}
x_{4}+y_{4}+y_{2} y_{3}=y_{2}^{2} x_{1} \\
x_{3}^{2}+x_{1} x_{4}+y_{3}^{2}=x_{1}\left(y_{4}+y_{2} y_{3}\right)
\end{gathered}
$$

которая задает условия инцидентности для

$$
\begin{aligned}
& \omega\left(l_{4}, x_{1} \alpha_{1}+x_{3} \alpha_{3}+x_{4} \alpha_{4}\right)=\left(h_{4}, x_{1} \alpha_{2}+x_{4} \alpha_{3}+\left(x_{3}^{2}+x_{1} x_{4}\right) \alpha_{4}\right) \\
& \omega\left(h_{4}, y_{2} \alpha_{2}+y_{3} \alpha_{3}+y_{4} \alpha_{4}\right)=\left(l_{4}, y_{2}^{2} \alpha_{1}+\left(y_{4}+y_{2} y_{3}\right) \alpha_{3}+y_{3}^{2} \alpha_{4}\right)
\end{aligned}
$$

Для того чтобы показать, что отображение ω биективно, построим отображение φ, обратное к ω. Известна теорема о том, что преобразование поля $F_{p}{ }^{n}$ вида $x \rightarrow x^{p}$ является автоморфизмом (см., например, [5D), и значит, имеет обратное преобразование, которое можно обозначить $x \rightarrow x^{1 / p}$. Используя это преобразование поля, зададим следующее отображение φ :

$$
\begin{gathered}
\varphi\left(l_{1}, 0\right)=\left(h_{1}, 0\right), \varphi\left(h_{1}, 0\right)=\left(l_{1}, 0\right), \\
\varphi\left(l_{2}, x_{1} \alpha_{1}\right)=\left(h_{2}, x_{1}^{1 / 2} \alpha_{2}\right), \varphi\left(h_{2}, y_{2} \alpha_{2}\right)=\left(l_{2}, y_{2} \alpha_{1}\right), \\
\varphi\left(l_{3}, x_{2} \alpha_{2}+x_{4} \alpha_{4}\right)=\left(h_{3}, x_{2} \alpha_{1}+x_{4}^{1 / 2} \alpha_{3}\right) \\
\varphi\left(h_{3}, y_{1} \alpha_{1}+y_{3} \alpha_{3}\right)=\left(l_{3}, y_{1}^{1 / 2} \alpha_{2}+y_{3} \alpha_{4}\right) \\
\varphi\left(l_{4}, x_{1} \alpha_{1}+x_{3} \alpha_{3}+x_{4} \alpha_{4}\right)=\left(h_{4}, x_{1}^{1 / 2} \alpha_{2}+x_{4}^{1 / 2} \alpha_{3}+\left(x_{3}+x_{1}^{1 / 2} x_{4}^{1 / 2}\right) \alpha_{4}\right), \\
\varphi\left(h_{4}, y_{2} \alpha_{2}+y_{3} \alpha_{3}+y_{4} \alpha_{4}\right)=\left(l_{4}, y_{2} \alpha_{1}+y_{3} \alpha_{4}+\left(y_{4}+y_{2} y_{3}\right)^{1 / 2} \alpha_{3}\right)
\end{gathered}
$$

Вычислим значения отображений $\varphi \omega$ и $\omega \varphi$ для элементов общего положения. Для всех остальных вычисления проводятся аналогичным образом:

$$
\begin{gathered}
\omega\left(\varphi\left(l_{4}, x_{1} \alpha_{1}+x_{3} \alpha_{3}+x_{4} \alpha_{4}\right)\right)=\omega\left(h_{4}, x_{1}^{1 / 2} \alpha_{2}+x_{4}^{1 / 2} \alpha_{3}+\left(x_{3}+x_{1}^{1 / 2} x_{4}^{1 / 2}\right) \alpha_{4}\right)= \\
\left(l_{4},\left(x_{1}^{1 / 2}\right)^{2} \alpha_{1}+\left(x_{3}+x_{1}^{1 / 2} x_{4}^{1 / 2}+x_{1}^{1 / 2} x_{4}^{1 / 2}\right) \alpha_{3}+\left(x_{4}^{1 / 2}\right)^{2} \alpha_{4}\right)=\left(l_{4}, x_{1} \alpha_{1}+x_{3} \alpha_{3}+x_{4} \alpha_{4}\right), \\
\varphi\left(\omega\left(l_{4}, x_{1} \alpha_{1}+x_{3} \alpha_{3}+x_{4} \alpha_{4}\right)\right)=\varphi\left(h_{4}, x_{1} \alpha_{2}+x_{4} \alpha_{3}+\left(x_{3}^{2}+x_{1} x_{4}\right) \alpha_{4}\right)=\left(l_{4}, x_{1} \alpha_{1}+\right. \\
\left.+\left(x_{3}^{2}+x_{1} x_{4}+x_{1} x_{4}\right)^{1 / 2} \alpha_{3}+x_{4} \alpha_{4}\right)=\left(l_{4}, x_{1} \alpha_{1}+x_{3} \alpha_{3}+x_{4} \alpha_{4}\right), \\
\omega\left(\varphi\left(h_{4}, y_{2} \alpha_{2}+y_{3} \alpha_{3}+y_{4} \alpha_{4}\right)\right)=\omega\left(l_{4}, y_{2} \alpha_{1}+y_{3} \alpha_{4}+\left(y_{4}+y_{2} y_{3}\right)^{1 / 2} \alpha_{3}\right)=\left(h_{4}, y_{2} \alpha_{2}+\right. \\
\left.+\left(y_{4}+y_{2} y_{3}+y_{2} y_{3}\right) \alpha_{4}+y_{3} \alpha_{3}\right)=\left(h_{4}, y_{2} \alpha_{2}+y_{3} \alpha_{3}+y_{4} \alpha_{4}\right),
\end{gathered}
$$

$$
\begin{gathered}
\varphi\left(\omega\left(h_{4}, y_{2} \alpha_{2}+y_{3} \alpha_{3}+y_{4} \alpha_{4}\right)\right)=\varphi\left(l_{4}, y_{2}^{2} \alpha_{1}+\left(y_{4}+y_{2} y_{3}\right) \alpha_{3}+y_{3}^{2} \alpha_{4}\right)= \\
=\left(h_{4}^{\prime}, y_{2} \alpha_{2}+y_{3} \alpha_{3}+\left(y_{4}+y_{2} y_{3}+\left(y_{2}^{2}\right)^{1 / 2}\left(y_{3}^{2}\right)^{1 / 2}\right) \alpha_{4}\right)=\left(h_{4}, y_{2} \alpha_{2}+y_{3} \alpha_{3}+y_{4} \alpha_{4}\right) .
\end{gathered}
$$

Таким образом убедились, что $\varphi=\omega^{-1}$ и отображение ω является автоморфизмом.

Легко вычислить, что

$$
\begin{align*}
\omega^{2}\left(l_{4}, x_{1} \alpha_{1}+x_{3} \alpha_{3}+x_{4} \alpha_{4}\right) & =\left(l_{4}, x_{1}^{2} \alpha_{1}+x_{3}^{2} \alpha_{3}+x_{4}^{2} \alpha_{4}\right) \\
\omega^{2}\left(h_{4}, y_{2} \alpha_{2}+y_{3} \alpha_{3}+y_{4} \alpha_{4}\right) & =\left(h_{4}, y_{2}^{2} \alpha_{2}+y_{3}^{2} \alpha_{3}+y_{4}^{2} \alpha_{4}\right) \tag{6}
\end{align*}
$$

Получим аналогичные преобразования при применении ω^{2} и ко всем остальным элементам геометрии $\tilde{\Gamma}(W, S)$.

Известно, что все автоморфизмы конечного поля $F_{2^{n}}$ составляют конечную циклическую группу порядка n с образующей $\sigma: x \rightarrow x^{2}$ (см., напр., [5]). Из равенства (6) видно, что ω^{2} совпадает с автоморфизмом поля σ. Так как порядок автоморфизма σ равен n, то $\omega^{2 n}=\sigma^{n}=e$, где e - тождественный автоморфизм. Следовательно, порядок автоморфизма ω равен $2 n$. Теорема доказана.

Если Δ - произвольный автоморфизм поля $F_{2^{n}}$, то $\omega \Delta$ будет автоморфизмом геометрии $\tilde{\Gamma}(W, S)$. Найдем условия, при которых $\omega \Delta$ будет автоморфизмом второго порядка, т.е. $(\omega \Delta)^{2}=e$.

Предложение. При нечетном $n=2 k+1$ существует автоморфизм Δ поля $F_{2^{n}}$ такой, что $(\omega \Delta)^{2}=e-$ тождественный автоморфизм. При четном n такого автоморфизма не существует.

Доказательство. Поскольку ω^{2} порождает группу автоморфизмов поля $F_{2^{n}}$, то ω коммутирует с любым автоморфизмом этого поля. Тогда равенство $(\omega \Delta)^{2}=e$ можно переписать в виде $\omega^{2}=\Delta^{-2}$. Запись Δ^{-2} корректна, так как автоморфизмы поля $F_{2^{n}}$ образуют группу, и поэтому у автоморфизма Δ^{2} существует обратный Δ^{-2}. Как было установлено в ходе доказательства теоремы, $\omega^{2}=\sigma$, где σ является образующей циклической группы $\operatorname{Aut}\left(F_{2^{n}}\right)$ (всех автоморфизмов поля $F_{2^{n}}$), поэтому можно записать

$$
\begin{equation*}
\Delta^{-2}=\sigma \tag{7}
\end{equation*}
$$

Группа $\operatorname{Aut}\left(F_{2} n\right)$ изоморфна Z_{n} с образующей $\overline{1}$, поэтому в терминах Z_{n} равенство (7) можно записать в виде $\overline{-2} \cdot \bar{\Delta}=\overline{1}$, где $\bar{\Delta}$ - элемент из Z_{n}, соответствующий Δ из $\operatorname{Aut}\left(F_{2^{n}}\right)$. Или, иначе,

$$
\begin{equation*}
(n-2) \cdot \bar{\Delta} \equiv 1(\bmod n) \tag{8}
\end{equation*}
$$

При четном n уравнение (8) не имеет решения, а при нечетном $n=2 k+1$ решением будет $\bar{\Delta}=k$, и соответствующее ему отображение Δ имеет вид $\Delta: x \rightarrow x^{2^{k}}$. Предложение доказано.

1. Устименко В. А. Геометрии Титса и алгебры с делением // Докл. АН СССР.-1987.-296, №5.-C.1061-1065.
2. Устименко В. А. Линейная интерпретация геометрии флагов групп Шевалле // Укр. мат. журн.-1990.-42, № 3.-С.383-387.
3. Freydental H., deWries H. Linear Lie group.-London: Acad. press., 1969.-320p.
4. Картер P. Простые группы и простые алюебры Ли // Математика. Сб. переводов.-1966.10: 5.-C.3-47.
5. Кострикин А. И. Введение в алгебру.-М.: Наука, 1977.-С.427-431.
