Л. Р. Пейкре, асп. (Киев. ун-т)

АВТОМОРФИЗМ ГЕОМЕТРИИ ГРУППЫ $B_2(2^n)$ КАК ПОЛИНОМИАЛЬНОЕ ОТОБРАЖЕНИЕ

стеми коренів. Доведені деякі властивості цього автоморфізму.

Приведено построение автоморфизма геометрии группы $B_2(2^n)$ как продолжение автоморфизма системы корней. Доказаны некоторые свойства этого автоморфизма.

Наведена побудова автоморфізму геометрії групи $B_2(2^n)$ як продовження автоморфізму си-

Класс систем инцидентности, ныне известных как геометрии Титса, введен в конце 50-х годов. В настоящей статье используется конструкция "накрытия" геометрии группы Вейля, сопоставляющая геометрию произвольной системе корней. Геометрии ранга 2 из этого класса могут быть конечными обобщенными m-угольниками при m=3,4,6 (системы корней A_2,B_2,G_2). Построение такой конструкции описано в [1, 2].

Пусть Ф — неприводимая система корней. Элементы дуального пространства α_i^* являются линейными функциями на $\Phi(\alpha_i \in \Phi)$. Пусть W — группа Вейля данной системы корней Φ . Под $l(x)^w$, где l(x) –линейная на Φ функ-

ция, $w \in W$, будем понимать l(w(x)). Рассмотрим орбиты H_i группы W на множестве линейных на Φ функций, содержащие α_i^* . Пусть $H = \bigcup H_i$, задана типовая функция $t(a) = i \Leftrightarrow a \in H$; и отношение инцидентности $a, b \in H$ $alb \Leftrightarrow$ $\Leftrightarrow a(x)b(x) \ge 0 \ \forall x \in \Phi.$

Известно, что заданная таким образом система инцидентности (H, I, t) изоморфна геометрии группы Вейля $\Gamma(W, S)$, т.е. множеству смежных классов группы W по максимальным стандартным подгруппам с отношением инцидентности $\alpha I\beta \Leftrightarrow \alpha \cap \beta \neq \emptyset$. Доказательство этого факта можно найти, например, в [3].

В случае системы корней B_2 имеется две орбиты группы Вейля

$$H_1 = \{l_1, l_2, l_3, l_4\} \text{ if } H_2 = \{h_1, h_2, h_3, h_4\},$$

где $l_1 = \alpha_1^*, l_2 = \alpha_2^* - \alpha_1^*, l_3 = \alpha_1^* - \alpha_2^*, l_4 = -\alpha_1^*$ и $h_1 = \alpha_2^*, h_2 = 2\alpha_1^* - \alpha_2^*, h_3 = \alpha_2^* - \alpha_2^*$ $-2\alpha_1^*, h_4 = -\alpha_2^*, \alpha_1, \alpha_2 \in B_2^+.$

Определим множества $\eta^{\pm}(l_i) = \{\alpha_k \in B_2^+ \mid l_i(\alpha_k) \ge 0\}, o(l_i) = \{\alpha_k \in B_2^+ \mid l_i(\alpha_k) = 0\}$ = 0}, $i = \overline{1, 4}$, и аналогичным образом множества $\eta^{+}(h_i)$, $\eta^{-}(h_i)$, $o(h_i)$, $i = \overline{1, 4}$.

Отношение инцидентности I между l_i , $i = \overline{1,4}$, h_j , $j = \overline{1,4}$, можно задать условием

$$l_i I h_i \Leftrightarrow | \eta^+(l_i) \cap \eta^-(h_i) | + | \eta^-(l_i) \cap \eta^+(h_i) | = 0.$$

На множестве корней B_2 существует автоморфизм второго порядка, связанный с графом [4], обозначаемый далее ω . На B_2^+ он действует следующим

образом: $\omega(\alpha_1) = \alpha_2$, $\omega(\alpha_2) = \alpha_1$, $\omega(\alpha_3) = \alpha_4$, $\omega(\alpha_4) = \alpha_3$, где $\alpha_3 = \alpha_1 + \alpha_2$, $\alpha_4 = \alpha_4$ $\alpha_1 + 2\alpha_2$, Автоморфизм ω может быть продлен на элементы орбит H_1, H_2 : $\omega(h_i) = l_i$, $\omega(l_i) = h_i$, $i = \overline{1,4}$. Рассмотрим накрытие $\tilde{\Gamma}(W,S)$ системы инцидентно-

© Л. Р. ПЕЙКРЕ, 1992 1530

сти $\Gamma(W,S)$. Пусть задано корневое разложение алгебры Ли, соответствующей простой группе $B_2(2^n)$: $L = L^- + H + L^+$, где $L^- = \sum_{\alpha \in \Phi^+} L_\alpha$, $L^+ = \sum_{\alpha \in \Phi^+} L_\alpha$, H

— подалгебра Картана, L_{α} — корневое подпространство. Эта алгебра является аналогом комплексной алгебры Ли $B_2(\mathbb{C})$, определенным над $F_q(q=2^n)$ с по-

мощью базиса Шевалле. Геометрия группы $G = B_2(F_q)$ является совокупностью смежных классов по стандартным параболическим подгруппам P_1 и P_2 . Из результатов работы [4] вытекает, что G/P_1 можно отождествить с элементами $l+\bar{x}$, где $l\in H_1$ и \bar{x} принадлежит некоторому зависящему от l

подпространству L^+ , а G/P_2 можно отождествить с $h + \overline{y}$, где $h \in H_2$ и \overline{y} также принадлежит некоторому зависящему от h подпространству L^+ . По построению элементы $h \in H_i$, i = 1, 2, являются элементами алгебры Картана.

Тогда накрытие $\tilde{\Gamma}(W,S)$ системы инцидентности $\Gamma(W,S)$ содержит пары $\left(l_i, \sum_{\alpha_k \in \eta^-(l_i)} x_k \alpha_k\right), \left(h_i, \sum_{\alpha_k \in \eta^-(h_i)} y_k \alpha_k\right), x_k, y_k \in F_{2^n}, i = \overline{1, 4},$

$$\alpha_k \in \eta^-(l_i)$$
) $\alpha_k \in \eta^-(h_i)$) с отношением инцидентности \tilde{I} :

$$\left(l_i, \sum_{\alpha_k \in \eta^-(l_i)} x_k \alpha_k \right) \tilde{I} \left(h_j, \sum_{\alpha_k \in \eta^-(h_j)} y_k \alpha_k \right) \Leftrightarrow$$

$$i) \quad l_i I h_j; \qquad ii) \quad \left[l_i + \sum_{\alpha_k \in \eta^-(l_i)} x_k \alpha_k, h_j + \sum_{\alpha_k \in \eta^-(h_i)} y_k \alpha_k \right] = 0,$$

Условие іі) соответствует условию (2) работы [2, с.387]. Исходя из этих условий, отношение инцидентности элементов системы

 $\tilde{\Gamma}(W,S)$ определяется табл.1 ("+" означает инцидентность без дополнительных условий, "-" - неинцидентность элементов). Табл. 1

 $(h_1,0)$ $(h_2,y_2\alpha_2)$ $(h_3,y_1\alpha_1+y_3\alpha_3)$ $(h_4,y_2\alpha_2+y_3\alpha_3+y_4\alpha_4)$

+	+	-	_
+	(I—)	$x_1 = y_1$	-
-	$x_2 = y_2$	-	$x_2 = y_2$ $x_2 y_3 = x_4 + y_4$
-	-	$x_1 = y_1$	$x_3 + y_3 = x_1 y_2$
		$x_3 = y_3$	$x_4 + y_4 = x_3 y_2$
	+ +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$x_1 = y_1$

Продолжим автоморфизм ω на систему $\Gamma(W,S)$.

Теорема. Отображение ю, заданное равенствами

$$\omega(l_4, x_1\alpha_1 + x_3\alpha_3 + x_4\alpha_4) = (h_4, x_1\alpha_2 + x_4\alpha_3 + (x_3^2 + x_1x_4)\alpha_4),$$

$$\omega(h_4, y_2\alpha_2 + y_3\alpha_3 + y_4\alpha_4) = (l_4, y_2^2\alpha_1 + (y_4 + y_2y_3)\alpha_3 + y_3^2\alpha_4),$$

есть автоморфизм порядка 2n геометрии группы $B_2(2^n)$. Доказательство. Заметим, что заданное таким образом отображение является автоморфизмом, если оно сохраняет отношение инцидентности и

биективно. Проверим сохранение отношений инцидентности для образов всех

попарно инцидентных элементов из табл.1. Для элементов $(l_1, 0)$ и $(h_1, 0)$ это, очевидно, справедливо. Легко заме-

тить, что для образов $(h_1, 0), (l_2, y_2^2 \alpha_1)$ инцидентной пары $(l_1, 0), (h_2, y_2 \alpha_2)$ также сохраняется отношение инцидентности. Совершенно аналогично сохра-

няется отношение инцидентности и для образов пары $(h_1, 0), (l_2, x_1\alpha_1)$. Рас-

смотрим пару $(l_3, x_2\alpha_2 + x_4\alpha_4), (h_2, y_2\alpha_2)$. Для нее условие инцидентности задается равенством $x_2 = y_2$, а для образов этой пары $(l_2, y_2^2 \alpha_1)$, $(h_3, x_2^2 \alpha_1 + x_4 \alpha_3)$

условие инцидентности задается равенством $x_2^2 = y_2^2$. В поле характеристики 2 эти условия равносильны. Для пары $(l_2, x_1\alpha_1), (h_3, y_1\alpha_1 + y_3\alpha_3)$ условие инцидентности $x_1 = y_1$ является также условием инцидентности их образов (h_2 ,

 $x_1\alpha_2$) и $(l_3, y_1\alpha_2 + y_3^2\alpha_4)$. В случае пары $(l_3, x_2\alpha_2 + x_4\alpha_4)$, $(h_4, y_2\alpha_2 + y_3\alpha_3 + y_4\alpha_4)$ $+ y_4 \alpha_4$) условия инцидентности задаются системой

$$x_2 = y_2,$$

$$x_2 y_3 = x_4 + y_4. (1)$$

Легко убедиться, что в поле
$$F_{2^n}$$
 система (1) равносильна системе
$$x_2^2 = y_2^2,$$

(2)

(3)

$$y_4 + y_2 y_3 = x_4$$
, задающей условия инцидентности для

 $\omega(l_3, x_2\alpha_2 + x_4\alpha_4) = (h_3, x_2^2\alpha_1 + x_4\alpha_3),$

$$\omega(h_4, y_2\alpha_2 + y_3\alpha_3 + y_4\alpha_4) = (l_4, y_2^2\alpha_1 + (y_4 + y_2y_3)\alpha_3 + y_3^2\alpha_4).$$

Элементы $(l_4, x_1\alpha_1 + x_3\alpha_3 + x_4\alpha_4), (h_3, y_1\alpha_1 + y_3\alpha_3)$ инцидентны при

$$x_1 = y_1, x_3 = y_3.$$

Домножим первое равенство системы на x_4 и прибавим ко второму, возведенному в квадрат, получим

 $x_3^2 + x_1 x_4 = y_3^2 + y_1 x_4$

$$x_1 = y_1$$
,

В поле $F_{2^n}(\text{char}F_{2^n}=2)$ систему (3) можно записать в виде

$$x_1 = y_1,$$

$$x_3^2 + x_1 x_4 + y_3^2 = y_1 x_4. (4)$$

Система (4) представляет собой условия инцидентности образов

$$\omega(l_4, x_1\alpha_1 + x_3\alpha_3 + x_4\alpha_4) = (h_4, x_1\alpha_2 + x_4\alpha_3 + (x_3^2 + x_1x_4)\alpha_4),$$

$$\omega(h_3, y_1\alpha_1 + y_3\alpha_3) = (l_3, y_1\alpha_2 + y_3^2\alpha_4).$$

1532 ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 11 Условия инцидентности элементов $(l_4, x_1\alpha_1 + x_3\alpha_3 + x_4\alpha_4)$, $(h_4, y_2\alpha_2 + y_3\alpha_3 + x_4\alpha_4)$ $+ y_4 \alpha_4$) задаются системой $x_3 + y_3 = x_1 y_2$

Умножим первое равенство системы на y_2 и заменим x_3y_2 на сумму $x_4 + y_4$ из

$$x_4 + y_4 = x_3 y_2.$$

второго равенства, имеем

 $x_4 + y_4 + y_2 y_3 = x_1 y_2^2$. Возведем первое равенство в квадрат и прибавим к обеим сторонам x_1x_4 : x_3^2 +

в квадрат и прибавим к обеим сторонам
$$x_1x_4$$
: x_3^2 +

 $+ x_1 x_4 + y_3^2 = x_1 (x_1 y_2^2 + x_4)$, Заменим $x_1 y_2^2$ 'на соответствующее значение из равенства (5). Таким образом, учитывая, что $char F_{2^n} = 2$, получаем систему $x_4 + y_4 + y_2 y_3 = y_2^2 x_1$

$$x_3^2 + x_1 x_4 + y_3^2 = x_1 (y_4 + y_2 y_3),$$
 задает условия инцидентности для

которая задает условия инцидентности для

$$\omega(l_4, x_1\alpha_1 + x_3\alpha_3 + x_4\alpha_4) = (h_4, x_1\alpha_2 + x_4\alpha_3 + (x_3^2 + x_1x_4)\alpha_4),$$

$$\omega(h_4, y_2\alpha_2 + y_3\alpha_3 + y_4\alpha_4) = (l_4, y_2^2\alpha_1 + (y_4 + y_2y_3)\alpha_3 + y_3^2\alpha_4).$$

Для того чтобы показать, что отображение обиективно, построим отображение φ , обратное к ω . Известна теорема о том, что преобразование поля F_{n^n} вида $x \to x^p$ является автоморфизмом (см., например, [5]), и значит, имеет обратное преобразование, которое можно обозначить $x \to x^{1/p}$. Используя это

$$\begin{split} & \varphi(l_1,0) = (h_1,0), \, \varphi(h_1,0) = (l_1,0), \\ & \varphi(l_2,x_1\alpha_1) = (h_2,\,x_1^{1/2}\alpha_2), \, \varphi(h_2,\,y_2\alpha_2) = (l_2,\,y_2\alpha_1), \\ & \varphi(l_3,\,x_2\alpha_2 + x_4\alpha_4) = (h_3,\,x_2\alpha_1 + x_4^{1/2}\alpha_3), \\ & \varphi(h_3,\,y_1\alpha_1 + y_3\alpha_3) = (l_3,\,y_1^{1/2}\alpha_2 + y_3\alpha_4), \end{split}$$

преобразование поля, зададим следующее отображение ф:

$$\varphi(l_4, x_1\alpha_1 + x_3\alpha_3 + x_4\alpha_4) = (h_4, x_1^{1/2}\alpha_2 + x_4^{1/2}\alpha_3 + (x_3 + x_1^{1/2}x_4^{1/2})\alpha_4),$$

$$\varphi(h_4, y_2\alpha_2 + y_3\alpha_3 + y_4\alpha_4) = (l_4, y_2\alpha_1 + y_3\alpha_4 + (y_4 + y_2y_3)^{1/2}\alpha_3).$$

Вычислим значения отображений фш и шф для элементов общего положения. Для всех остальных вычисления проводятся аналогичным образом:

$$\begin{split} &\omega(\phi(l_4,x_1\alpha_1+x_3\alpha_3+x_4\alpha_4))=\omega(h_4,x_1^{1/2}\alpha_2+x_4^{1/2}\alpha_3+(x_3+x_1^{1/2}x_4^{1/2})\alpha_4)=\\ &(l_4,(x_1^{1/2})^2\alpha_1+(x_3+x_1^{1/2}x_4^{1/2}+x_1^{1/2}x_4^{1/2})\alpha_3+(x_4^{1/2})^2\alpha_4)=(l_4,x_1\alpha_1+x_3\alpha_3+x_4\alpha_4),\\ &\phi(\omega(l_4,x_1\alpha_1+x_3\alpha_3+x_4\alpha_4))=\phi(h_4,x_1\alpha_2+x_4\alpha_3+(x_3^2+x_1x_4)\alpha_4)=(l_4,x_1\alpha_1+x_4)\alpha_4+(x_3^2+x_1x_4+x_1x_4)^{1/2}\alpha_3+x_4\alpha_4)=(l_4,x_1\alpha_1+x_3\alpha_3+x_4\alpha_4), \end{split}$$

$$\omega(\varphi(h_4, y_2\alpha_2 + y_3\alpha_3 + y_4\alpha_4)) = \omega(l_4, y_2\alpha_1 + y_3\alpha_4 + (y_4 + y_2y_3)^{1/2}\alpha_3) = (h_4, y_2\alpha_2 + y_3\alpha_3 + y_2y_3)\alpha_4 + y_3\alpha_3) = (h_4, y_2\alpha_2 + y_3\alpha_3 + y_4\alpha_4),$$

(5)

$$\varphi(\omega(h_4, y_2\alpha_2 + y_3\alpha_3 + y_4\alpha_4)) = \varphi(l_4, y_2^2\alpha_1 + (y_4 + y_2y_3)\alpha_3 + y_3^2\alpha_4) =$$

$$= (h_4, y_2\alpha_2 + y_3\alpha_3 + (y_4 + y_2y_3 + (y_2^2)^{1/2}(y_3^2)^{1/2})\alpha_4) = (h_4, y_2\alpha_2 + y_3\alpha_3 + y_4\alpha_4).$$

Таким образом убедились, что $\phi = \omega^{-1}$ и отображение ω является автоморфизмом.

Легко вычислить, что

$$\omega^{2}(l_{4}, x_{1}\alpha_{1} + x_{3}\alpha_{3} + x_{4}\alpha_{4}) = (l_{4}, x_{1}^{2}\alpha_{1} + x_{3}^{2}\alpha_{3} + x_{4}^{2}\alpha_{4}),$$

$$\omega^{2}(h_{4}, y_{2}\alpha_{2} + y_{3}\alpha_{3} + y_{4}\alpha_{4}) = (h_{4}, y_{2}^{2}\alpha_{2} + y_{3}^{2}\alpha_{3} + y_{4}^{2}\alpha_{4}).$$
(6)

Получим аналогичные преобразования при применении ω^2 и ко всем остальным элементам геометрии $\tilde{\Gamma}(W,S)$.

Известно, что все автоморфизмы конечного поля F_{2^n} составляют конечную циклическую группу порядка n с образующей $\sigma: x \to x^2$ (см., напр., [5]). Из равенства (6) видно, что ω^2 совпадает с автоморфизмом поля σ . Так как по-

рядок автоморфизма σ равен n, то $\omega^{2n} = \sigma^n = e$, где e – тождественный автомор-

физм. Следовательно, порядок автоморфизма ω равен 2n. Теорема доказана. Если Δ — произвольный автоморфизм поля F_{2^n} , то $\omega \Delta$ будет автомор-

физмом геометрии $\tilde{\Gamma}(W,S)$. Найдем условия, при которых $\omega\Delta$ будет автомор-

физмом второго порядка, т.е. $(\omega \Delta)^2 = e$. **Предложение.** При нечетном n = 2k + 1 существует автоморфизм Δ поля F_{2^n} такой, что $(\omega \Delta)^2 = e - тождественный автоморфизм. При четном$

п такого автоморфизма не существует. Доказательство. Поскольку ω^2 порождает группу автоморфизмов

поля F_{2^n} , то ω коммутирует с любым автоморфизмом этого поля. Тогда равенство $(\omega \Delta)^2 = e$ можно переписать в виде $\omega^2 = \Delta^{-2}$. Запись Δ^{-2} корректна, так как автоморфизмы поля F_{2^n} образуют группу, и поэтому у автоморфизма

 Δ^2 существует обратный Δ^{-2} . Как было установлено в ходе доказательства теоремы, $\omega^2 = \sigma$, где σ является образующей циклической группы $\operatorname{Aut}(F_{2^n})$ (всех автоморфизмов поля F_{2^n}), поэтому можно записать

Группа
$$\operatorname{Aut}(F_{2^n})$$
 изоморфна Z_n с образующей $\overline{1}$, поэтому в терминах Z_n

равенство (7) можно записать в виде $\overline{-2}\cdot\overline{\Delta}=\overline{1}$, где $\overline{\Delta}$ — элемент из Z_n , соответствующий Δ из $Aut(F_{2^n})$. Или, иначе,

$$(n-2)\cdot\overline{\Delta} \equiv 1 (\text{mod } n). \tag{8}$$
 При четном n уравнение (8) не имеет решения, а при нечетном $n=2k+1$

решением будет $\overline{\Delta} = k$, и соответствующее ему отображение Δ имеет вид $\Delta: x \to x^{2^k}$. Предложение доказано.

1. Устименко В. А. Геометрии Титса и алгебры с делением // Докл. АН СССР.-1987.-296, Nº5.-C.1061-1065.

Устименко В. А. Линейная интерпретация геометрии флагов групп Шевалле // Укр. мат. журн.-1990.-42, № 3.-С.383-387.

3. Freydental H., deWries H. Linear Lie group.-London: Acad. press., 1969.-320p. Картер Р. Простые группы и простые алюебры Ли // Математика. Сб. переводов.–1966.– 10: 5.–С.3–47.

Кострикин А. И. Введение в алгебру.-М.: Наука, 1977.-С.427-431.

Получено 05.05.91

(7)