А. С. Романюк, канд. физ.-мат. наук (Ин-т математики АН Украины, Киев)

НАИЛУЧШИЕ ТРИГОНОМЕТРИЧЕСКИЕ И БИЛИНЕЙНЫЕ ПРИБЛИЖЕНИЯ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ ИЗ КЛАССОВ $\boldsymbol{B}_{p, \theta}^{r}$. I

Изучаются приближения классов $B_{p, 0}^{r}$ периодических функций многих переменных с помощью тригонометрических полиномов с заданным числом гармоник. Полученные результаты используются для установления порядковых оценок приближения функций вида $f(x-y)$, $f(x) \in B_{p, 0}^{r}$, комбинациями произведений функций меньшего количества переменных.

Вивчаються наближення класів $B_{p, \theta}^{r}$ періодичних функцій багатьох змінних за допомогою тригонометричних поліномів із заданим числом гармонік. Одержані результати використовуються для встановлення порядкових оцінок наближення функцій вигляду $f(x-y), f(x) \in B_{p, 0}^{r}$, комбінаціями добутків функцій від меншої кількості змінних.
В настоящей работе продолжается [1] изучение вопросов приближения классов Бесова $B_{p, \theta}^{r}$ периодических функций многих переменных в двух направлениях: приближение с помощью тригонометрических полиномов с заданным числом гармоник и приближение линейными комбинациями произведений функций меньшего числа переменных. При изложении результатов будем пользоваться обозначениями и определениями из работы [1], но для удобства напомним некоторые из них.

Пусть R^{m} - евклидово пространство с элементами $x=\left(x_{1}, \ldots, x_{m}\right),(x, y)=$ $=x_{1} y_{1}+\ldots+x_{m} y_{m}, L_{p}\left(\pi_{m}\right)-$ пространство периодических функций $f(x)=$ $=f\left(x_{1}, \ldots, x_{m}\right)$, определенных на кубе $\pi_{m}=\prod_{j=1}^{m}[-\pi ; \pi]$ с конечной нормой

$$
\|f\|_{p}=\left((2 \pi)^{-m} \int_{\pi_{m}}|f(x)|^{p} d x\right)^{1 / p}, p \in[1, \infty) .
$$

В дальнейшем предполагаем, что $p \in(1, \infty)$ и

$$
\int_{-\pi}^{\pi} f(x) d x_{j}=0, j=1, \ldots, m
$$

Далее, пусть $s=\left(s_{1}, \ldots, s_{m}\right), s_{j} \in N, j=\overline{1, m}$. Положим

$$
\begin{gathered}
\rho(s)=\left\{k: k=\left(k_{1}, \ldots, k_{m}\right), 2^{s_{j}-1} \leq\left|k_{j}\right|<2^{s_{j}}, j=\overline{1, m}\right\}, \\
\delta_{s}(f, x)=\sum_{k \in \rho(s)} \hat{f}(k) e^{i(k, x)},
\end{gathered}
$$

где

$$
\hat{f}(k)=(2 \pi)^{-m} \int_{\pi_{m}} f(t) e^{-i(k, t)} d t
$$

Класс $B_{p, \theta}^{r}$ определяется следующим образом:

$$
B_{p, \theta}^{r}=\left\{f(\cdot):\|f\|_{B_{p, \theta}^{r}}=\left(\sum_{s} 2^{(s, r) \theta}\left\|\delta_{s}(f, \cdot)\right\|_{p}^{\theta}\right)^{1 / \theta} \leq 1\right\}
$$

$$
\begin{aligned}
& \text { где } r=\left(r_{1}, \ldots, r_{m}\right), r_{j} \in R, r_{j}>0, j=\overline{1, m}, 1<p<\infty, \text { если } 1 \leq \theta<\infty, \text { и } \\
& \qquad B_{p, \infty}^{r}=\left\{f(\cdot):\left\|\delta_{s}(f, \cdot)\right\|_{p} \leq 2^{-(s, r)}, s=\left(s_{1}, \ldots, s_{m}\right), s_{j} \in N, j=\overline{1, m}\right\} .
\end{aligned}
$$

Отметим, что $B_{p, \infty}^{r}=H_{p}^{r}$, где H_{p}^{r} - известные классы С. М. Никольского (см., например, [2]).

Будем предполагать в дальнейшем, что координаты вектора $r=\left(r_{1}, \ldots, r_{m}\right)$ упорядочены таким образом, что $0<r_{1}=r_{2}=\ldots=r_{v}<r_{v+1} \leq \ldots \leq r_{m}$. С вектором r будем связывать два вектора: $\gamma=\left(\gamma_{1}, \ldots, \gamma_{m}\right)$, где $\gamma_{j}=r_{j} / r_{1}, j=\overline{1, m}$, и $\gamma=\left(\gamma_{1}^{\prime}, \ldots, \gamma_{m}^{\prime}\right)$, где $\gamma_{j}^{\prime}=\gamma_{j}$ при $j=\overline{1, v}$ и $\gamma_{j-1}<\gamma_{j}^{\prime}<\gamma_{j}$ при $j=v+1, \ldots, m$.

Число элементов множества S будем обозначать I S ।.

1. Рассмотрим величину

$$
e_{M}(f)_{q}=\inf _{k^{j}, c_{j}}\left\|f(\cdot)-\sum_{j=1}^{M} c_{j} e^{i\left(k^{j} \cdot \cdot\right)}\right\|_{q}
$$

где точная нижняя грань берется сначала по коэффициентам $\left\{c_{j}\right\}_{j=1}^{M}$, а затем - по всевозможным наборам векторов k^{j} из целочисленной решетки Z^{m}. Эту величину впервые рассматривал С. Б. Стечкин [3] при исследовании вопросов абсолютной сходимости ортогональных рядов.

Если F - некоторый функциональный класс, то полагаем

$$
\begin{equation*}
e_{M}\left(F, L_{q}\right)=\sup _{f \in F} e_{M}(f)_{q} \tag{1}
\end{equation*}
$$

В последнее время проводятся исследования поведения величин (1) для конкретных функциональных классов F и приближающих полиномов по полным ортонормированным системам. В одномерном случае отметим работу Б. С. Кашина [4], в которой изучались классы $\operatorname{Lip} \alpha$, заданные на [0, 1]. Там же приведена библиография предшествующих работ.

На некоторых классах периодических функций приближение полиномами с заданным числом гармоник изучалось в работах В. Н. Темлякова (см. [5] и ссылки там же), Э. С. Белинского [6, 7] и др.

Пусть $L_{q}\left(\pi_{2 m}\right)$ обозначает множество функций $f(x, y), x, y \in \pi_{m}$, с конечной "смешанной" нормой

$$
\|f(x, y)\|_{q}=\| \| f(\cdot, y)\left\|_{q_{1}}\right\|_{q_{2}}
$$

где $q=\left(q_{1}, q_{2}\right)$.
Для $f \in L_{q}\left(\pi_{2 m}\right)$ определим наилучшее билинейное приближение порядка M :

$$
\begin{equation*}
\tau_{M}(f)_{q}=\inf _{u_{i}(x), v_{i}(y)}\left\|f(x, y)-\sum_{i=1}^{M} u_{i}(x) v_{i}(y)\right\|_{q}, \tag{2}
\end{equation*}
$$

где $u_{i} \in L_{q_{1}}\left(\pi_{m}\right), v_{i} \in L_{q_{2}}\left(\pi_{m}\right)$.
Первые результаты по приближению билинейными формами получены в работе Е. Шмидта [8], в которой найдены наилучшие приближения периодической функции двух переменных суммами произведений функций одной переменной в L_{2}. Ряд важных результатов по билинейной аппроксимации некоторых классов периодических функций многих переменных получен В.Н. Темляковым (см., например, [5], там же изложена история вопроса). Из других работ

в этом направлении укажем на недавнюю работу М.-Б.А. Бабаева [9], в которой приведена подробная библиография, относящаяся, в основном, к непериодическому случаю.

Настоящая работа посвящена исследованию величин (1) и (2) на клас$\operatorname{cax} B_{p, \theta}^{r}$.

В первой части работы изучаются величины $e_{M}\left(B_{p, \theta}^{r}, L_{q}\right)$ в двух случаях: когда $1<p \leq 2<q<\infty$ и $2 \leq p<q<\infty$ (теоремы 1 и 2). Отметим, что в первом случае порядки убывания $e_{M}\left(W_{p}^{r}, L_{q}\right)$ и $e_{M}\left(H_{p}^{r}, L_{q}\right)$ известны [6] (определение классов W_{p}^{r} и H_{p}^{r} см., например, в [5]). Во втором случае порядок убывания величин (1) был, по-видимому, не известен даже для классов W_{p}^{r} и H_{p}^{r}.

Во второй части работы полученные результаты применяются для установления порядковых оценок билинейной аппроксимации функций вида $f(x, y)=$ $=f(x-y), f(x)$ - из класса $B_{p, \theta}^{r}$. При этом в ряде случаев найдены точные порядки величин

$$
\tau_{M}\left(B_{p, \theta}^{r}\right)_{q_{1}, q_{2}}=\sup _{f \in B_{p, \theta}^{r}} \tau_{M}(f)_{q_{1}, q_{2}}
$$

При доказательстве основных утверждений используются идейные подходы, которые применялись в работах [5-7] и др., с соответствующей модификацией, позволяющей учитывать более тонкую градацию функций из классов $B_{p, \theta}^{r}$.

Справедлива следующая теорема.
Теорема 1. Пусть $1<p \leq 2<q<\infty, 1 \leq \theta \leq \infty$. Тогда

$$
e_{M}\left(B_{p, \theta}^{r}, L_{q}\right) \asymp \begin{cases}M^{-1 / 2}\left(\log ^{v} M\right)^{1 / \theta^{\prime}}, & r_{1}=1 / p \\ \left(M^{-1} \log ^{v-1} M\right)^{r_{1}-1 / p+1 / 2}\left(\log ^{v-1} M\right)^{1 / 2-1 / \theta}, & r_{1}>1 / p\end{cases}
$$

где $\theta^{-1}+\left(\theta^{\prime}\right)^{-1}=1$.
Доказательство. Сначала получим оценки сверху.
Для этого нам понадобится следующее утверждение (см., например, [7]).
Лемма А. Пусть $2<q<\infty$. Тогда для всякого тригонометрического полинома $P\left(\Omega_{N}, x\right)$, содержащего не более N гармоник, и для любого $M<N$ найдется тригонометрический полином $P\left(\Omega_{M}, x\right)$, у которого не более M коэффициентов отлично от нуля и

$$
\left\|P\left(\Omega_{N}, x\right)-P\left(\Omega_{M}, x\right)\right\|_{q} \leq \sqrt{N M^{-1}}\left\|P\left(\Omega_{N}, x\right)\right\|_{2}
$$

причем $\Omega_{M} \subset \Omega_{N}$.
Пусть $f(x)$ - некоторая функция из класса $B_{p, \theta}^{r} ; M$ - заданное число и n - число, удовлетворяющее соотношению $M \asymp 2^{n} n^{v-1}$.

Построим для $f(x)$ приближающий полином, доставляющий требуемую оценку.

Положим

$$
P\left(\Omega_{M}, x\right)=\sum_{\left(s, \gamma^{\prime}\right)<n} \delta_{s}(f, x)+\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} P\left(\Omega_{N_{s}}, x\right),
$$

где $P\left(\Omega_{N_{s}}, x\right)$ - полиномы, которые будем строить для каждого блока $\delta_{s}(f, x)$ в соответствии с леммой A , и $\alpha>1$ - число, которое будем подбирать в каждом конкретном случае соответствующим образом.

В силу теоремы Литтлвуда - Пэли (см., например, [2, с. 63])

$$
\begin{align*}
&\left.\left\|f(x)-P\left(\Omega_{M}, x\right)\right\|_{q} \ll \| \sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n}\left|\delta_{s}(f, x)-P\left(\Omega_{N_{s}}, x\right)\right|^{2}\right)^{1 / 2} \cdot \|_{q}+ \\
&+\left\|\sum_{\left(s, \gamma^{\prime}\right) \geq \alpha n} \delta_{s}(f, x)\right\|_{q}=\sum_{1}+\sum_{2} \tag{3}
\end{align*}
$$

Согласно теореме 2 из [1] для второй суммы будем иметь

$$
\begin{equation*}
\Sigma_{2} \ll 2^{-n \alpha\left(r_{1}-1 / p+1 / q\right)} n^{(v-1)(1 / q-1 / \theta)_{+}} \tag{4}
\end{equation*}
$$

где $a_{+}=\max \{a, 0\}$.
Чтобы оценить Σ_{1}, воспользуемся последовательно неравенством Минковского, леммой А и неравенством Никольского (см., например, [5, с. 16]). В результате получим

$$
\begin{gather*}
\sum_{1} \leq\left(\left\|\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n}\left|\delta_{s}(f, x)-P\left(\Omega_{N_{s}}, x\right)\right|^{2}\right\|_{q / 2}\right)^{1 / 2} \ll \\
\ll\left(\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n}\left\|\delta_{s}(f, x)-\left.P\left(\Omega_{N_{s}}, x\right)\right|^{2}\right\| \|_{q / 2}\right)^{1 / 2}= \\
=\left(\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n}\left\|\delta_{s}(f, x)-P\left(\Omega_{N_{s}}, x\right)\right\|_{q}^{2}\right)^{1 / 2} \ll\left(\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} \frac{2^{\|} s \|_{1}}{N_{s}}\left\|\delta_{s}(f, x)\right\|_{2}^{2}\right)^{1 / 2} \leq \\
\leq\left(\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} \frac{2^{\mid s \|_{1}} 2^{\mid s \|_{1}(1 / p-1 / 2)}}{N_{s}}\left\|\delta_{s}(f, x)\right\|_{p}^{2}\right)^{1 / 2} \leq \\
\leq\left(\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} \frac{2^{2 \mid s \|_{1} / p}}{N_{s}}\left\|\delta_{s}(f, x)\right\|_{p}^{2}\right)^{1 / 2}, \tag{5}
\end{gather*}
$$

где $\|s\|_{1}=s_{1}+s_{2}+\ldots+s_{m}$.
Теперь, подставляя оценки (4), (5) в (3), приходим к соотношению

$$
\begin{align*}
\| f(x) & -P\left(\Omega_{M}, x\right) \|_{q} \ll\left(\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} \frac{2^{\|s\|_{1}}}{N_{s}}\left\|\delta_{s}(f, x)\right\|_{p}^{2}\right)^{1 / 2}+ \\
& +2^{-n \alpha\left(r_{1}-1 / p+1 / q\right)} n^{(v-1)(1 / q-1 / \theta)_{+}}=\varsigma_{1}+厅_{2} . \tag{6}
\end{align*}
$$

Дальнейшую оценку будем получать для каждого конкретного случая.
Пусть $r_{1}=1 / p$. Оценим сначала \triangleleft_{1}. Для этого положим

$$
\begin{equation*}
\left.\alpha=q / 2\left(1+(v-1) n^{-1} \log n\right)\right)_{q_{1}, q_{2}} . \tag{7}
\end{equation*}
$$

и каждому вектору s, для которого $n \leq(s, \gamma)<\alpha n$, поставим в соответствие число

$$
N_{s}=\left[2^{n} n^{v / \theta-1}\left\|\delta_{s}(f, x)\right\|_{p} 2^{r_{1}\|s\|_{1}}\right]+1
$$

$$
\text { и покажем, что } \sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} N_{s} \ll 2^{n} n^{v-1} \text {. }
$$

Действительно,

$$
\begin{aligned}
& \sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n^{\prime}} N_{s} \ll n^{m}+2^{n} n^{v / \theta-1} \sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} 2^{r_{1} \mid s\left\|_{1}\right\| \delta_{s}(f, x) \|_{p}=} \\
& =n^{m}+2^{n} n^{v / \theta-1} \sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} 2^{(s, r)}\left\|\delta_{s}(f, x)\right\|_{p} 2^{-(s, r)} 2^{r_{1}\|s\|_{1}} .
\end{aligned}
$$

Далее, применив неравенство Гельдера с показателем θ, продолжим оценку

$$
\begin{gathered}
\leq n^{m}+2^{n} n^{v / \theta-1}\left(\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} 2^{(s, r) \theta}\left\|\delta_{s}(f, x)\right\|_{p}^{\theta}\right)^{1 / \theta} \times \\
\times\left(\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} 2^{r_{1} \mid s \|_{1} \theta^{\prime}} 2^{-(s, r) \theta^{\prime}}\right)^{1 / \theta^{\prime}} \ll n^{m}+2^{n} n^{v / \theta-1}\|f\|_{B_{p, \theta}^{r}} \times \\
\times\left(\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} 2^{r_{1}\left(s, \gamma^{\prime}\right) \theta^{\prime}} 2^{-r_{1}(s, \gamma) \theta^{\prime}}\right)^{1 / \theta^{\prime}} \ll \\
\ll 2^{n} n^{v / \theta-1}\left(\sum_{l=n}^{\alpha n} 2^{r_{1} l \theta^{\prime}} \sum_{n \leq\left(s, \gamma^{\prime}\right)<l+1} 2^{-r_{1}(s, \gamma) \theta^{\prime}}\right)^{1 / \theta^{\prime}}=I_{1} .
\end{gathered}
$$

Для оценки внутренней суммы воспользуемся соотношением из [5, с.11]

$$
\begin{equation*}
\sum_{\left(s, \gamma^{\prime}\right) \geq n} 2^{-\alpha(s, \gamma)} \asymp 2^{-\alpha n} n^{v-1}, \alpha>0 \tag{8}
\end{equation*}
$$

в силу которого будем иметь

$$
I_{1} \ll 2^{n} n^{v / \theta-1}\left(\sum_{l=n}^{\alpha n} 2^{r_{1} l \theta^{\prime}} 2^{-r_{1} l \theta^{\prime}} l^{v-1}\right)^{1 / \theta^{\prime}} \ll 2^{n} n^{v / \theta-1} n^{v / \theta^{\prime}}=2^{n} n^{v-1}
$$

Таким образом, получаем требуемую оценку для количества гармоник.
Далее, подставляя в \mathscr{J}_{1} значение N_{s} и проводя аналогичные рассуждения, приходим к оценке

$$
\begin{align*}
פ_{1} \leq & 2^{-n / 2} n^{-(v / \theta-1) / 2}\left(\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} 2^{r_{1}\|s\|_{1}}\left\|\delta_{s}(f, x)\right\|_{p}\right)^{1 / 2} \leq \\
& \leq 2^{-n / 2} n^{-(v / \theta-1) / 2} n^{v / 2 \theta^{\prime}}=2^{-n / 2} n^{-v / \theta} n^{(v+1) / 2} . \tag{9}
\end{align*}
$$

Для оценки слагаемого g_{2} вместо α подставим его значение из (7) и, принимая во внимание равенство $r_{1}=1 / p$, получаем при $\theta \geq q$

$$
\begin{gathered}
g_{2}=2^{-\frac{n}{q} \frac{q}{2}\left(1+\frac{v-1}{n} \log n\right)} n^{(v-1)(1 / q-1 / \theta)}= \\
=2^{-n / 2} n^{-(v-1) / 2} n^{(v-1)(1 / q-1 / \theta)}=2^{-n / 2} n^{-v / \theta} n^{1 / \theta} n^{(v-1)(1 / q-1 / 2)},
\end{gathered}
$$

что, очевидно, не превышает правой части (9).
Если же $\theta<q$, то

$$
g_{2}=2^{-\frac{n}{q} \frac{q}{2}\left(1+\frac{v-1}{n} \log n\right)}=2^{-n / 2} n^{-v} n^{(v+1) / 2} \leq \mathscr{S}_{1}
$$

Таким образом, в обоих случаях $\mathscr{J}_{2} \leq \mathscr{S}_{1}$, отсюда с учетом (6) и (9) получаем искомую оценку.

Пусть $r_{1}>1 / p$. Рассмотрим два случая: а) $\theta \geq 2$; б) $1 \leq \theta<2$.
В случае а) будем полагать

$$
\begin{gather*}
\alpha=\frac{r_{1}-1 / p+1 / 2}{r_{1}-1 / p+1 / q} \\
N_{s}=\left[2^{n\left(r_{1}-1 / p+1\right)} 2^{-(s, \gamma)\left(r_{1}-1 / p\right)}\right]+1 \tag{10}
\end{gather*}
$$

Тогда в силу соотношения (8) получаем

$$
\begin{gathered}
\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} N_{s} \ll n^{m}+2^{n\left(r_{1}-1 / p+1\right)} \sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} 2^{-(s, \gamma)\left(r_{1}-1 / p\right)} \ll \\
\ll 2^{n\left(r_{1}-1 / p+1\right)} 2^{-n\left(r_{1}-1 / p\right)} n^{v-1}=2^{n} n^{v-1},
\end{gathered}
$$

и, таким образом, дляя \mathscr{S}_{1} выполняется оценка

$$
\begin{aligned}
\Phi_{1} & \leq 2^{-n\left(r_{1}-1 / p+1\right) / 2}\left(\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} 2^{2(s, \gamma) / p} 2^{(s, \gamma)\left(r_{1}-1 / p\right)}\left\|\delta_{s}(f, x)\right\|_{p}^{2}\right)^{1 / 2}= \\
& =2^{-n\left(r_{1}-1 / p+1\right) / 2}\left(\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} 2^{2(s, r)}\left\|\delta_{s}(f, x)\right\|_{p}^{2} 2^{-(s, \gamma)\left(r_{1}-1 / p\right)}\right)^{1 / 2} .
\end{aligned}
$$

Далее, применив неравенство Гельдера с показателем $\theta / 2$ и воспользовавшись соотношением (8), продолжим оценку

$$
\begin{gather*}
\leq 2^{-n\left(r_{1}-1 / p+1\right) / 2}\left(\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} 2^{(s, r) \theta}\left\|\delta_{s}(f, x)\right\|_{p}^{\theta}\right)^{1 / \theta} \times \\
\times\left(\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} 2^{-(s, \gamma)\left(r_{1}-1 / p\right) \theta /(\theta-2)}\right)^{1 / 2-1 / \theta} \ll 2^{-n\left(r_{1}-1 / p+1\right) / 2}\|f\|_{B_{p, \theta}^{r}} 2^{-n\left(r_{1}-1 / p\right) / 2} \times \\
\times n^{(v-1)(1 / 2-1 / \theta)} \asymp 2^{-n\left(r_{1}-1 / p+1 / 2\right)} n^{(v-1)(1 / 2-1 / \theta)} \tag{11}
\end{gather*}
$$

Чтобы оценить слагаемое \mathscr{I}_{2}, подставим вместо α его значение из (10) и с учетом неравенства $q>2$ получим

$$
\begin{equation*}
g_{2} \leq g_{1} \tag{12}
\end{equation*}
$$

Таким образом, сопоставив (6), (11) и (12), приходим к искомой оценке в случае $\theta \geq 2$.

Пусть теперь $1 \leq \theta<2$. Полагаем

$$
\begin{gather*}
\alpha=\frac{r_{1}-1 / p+1 / 2}{r_{1}-1 / p+1 / q}-\frac{(v-1)(1 / 2-1 / \theta) \log n}{\left(r_{1}-1 / p+1 / q\right) n}, \\
N_{s}=\left[2^{n\left(r_{1}-1 / p+1\right)} n^{(v-1)} 2^{-(s, \gamma)\left(r_{1}-1 / p\right)} 2^{(s, r) \theta}\left\|\delta_{s}(f, x)\right\|_{p}^{\theta}\right]+1 . \tag{13}
\end{gather*}
$$

Тогда

$$
\begin{gathered}
\sum_{n S\left(s, \gamma^{\prime}\right)<\alpha n} N_{s} \ll n^{m}+2^{n\left(r_{1}-1 / p+1\right)} n^{(v-1)} 2^{-n\left(r_{1}-1 / p\right)} \sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} 2^{(s, r) \theta}\left\|\delta_{s}(f, x)\right\|_{p}^{\theta} \ll \\
\ll n^{m}+2^{n} n^{v-1}\|f\|_{B_{p, \theta}^{\prime}}^{\theta} \ll 2^{n} n^{v-1}
\end{gathered}
$$

и, таким образом, для \Im_{1} будем иметъ оценку

$$
\begin{aligned}
& g_{1} \leq 2^{-n\left(r_{1}-1 / p+1\right) / 2} n^{-(v-1) / 2}\left(\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} 2^{(s, \gamma)\left(r_{1}+1 / p\right)} 2^{-(s, r) \theta}\left\|\delta_{s}(f, x)\right\|_{p}^{2-\theta}\right)^{1 / 2}= \\
& =2^{-n\left(r_{1}-1 / p+1\right) / 2} n^{-(v-1) / 2}\left(\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} 2^{\left.(s, \gamma)\left(1 / p-r_{1}\right) 2^{(s, r)(2-\theta)}\left\|\delta_{s}(f, x)\right\|_{p}^{2-\theta}\right)^{1 / 2} .}\right.
\end{aligned}
$$

Применяя неравенство Гельдера с показателем θ / (2-ө), продолжим оценку далее:

$$
\begin{aligned}
& \leq 2^{-n\left(r_{1}-1 / p+1\right) / 2} n^{-(v-1) / 2}\left(\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} 2^{(s, r) \theta}\left\|\delta_{s}(f, x)\right\|_{p}^{\theta}\right)^{1 / \theta-1 / 2} \times \\
& \times\left(\sum_{n \leq\left(s, \gamma^{\prime}\right)<\alpha n} 2^{-(s, \gamma)\left(r_{1}-1 / p\right) \theta(2 \theta-2)}\right)^{1-1 / \theta} \ll 2^{-n\left(r_{1}-1 / p+1 / 2\right)} n^{(v-1)(1 / 2-1 / \theta)} .
\end{aligned}
$$

При значении α из (11) убеждаемся, что $\mathfrak{g}_{2} \leq \mathfrak{I}_{1}$, и следовательно, в этом случае оценка установлена.

При доказательстве оценок снизу будем пользоваться двойственным соотношением, которое вытекает из более общего результата С.М. Никольского (см., например, [10, с. 25]). Речь идет о следующем соотношении

$$
\begin{equation*}
e_{M}\left(f, L_{q}\right)=\inf _{\Omega_{M}} \sup _{\substack{P \in L^{\prime}\left(\Omega_{M}\right) \\ \mid P \|_{q} \leq 1}}\left|\int_{\pi_{m}} f(x) P(x) d x\right|, \tag{14}
\end{equation*}
$$

где $L^{\perp}\left(\Omega_{M}\right)$ - множество функций, ортогональных пространству тригонометрических полиномов с гармониками из множества Ω_{M}.

Предварительно покажем, что оценку снизу достаточно получить для случая $v=m$. Действительно, пусть $B_{p, \theta}^{r^{v}}$ обозначает класс Бесова функций v переменных, где $r^{v}=\left(r_{1}, \ldots, r_{1}\right), r^{v} \in R^{v}, r_{1}>0 ; S_{v}$ - множество m-мерных векторов s вида $\left(s_{1}, \ldots, s_{v}, 1, \ldots, 1\right), s_{j} \in N, j=\overline{1, v}$, и $N^{v}=\left\{s: s=\left(s_{1}, \ldots, s_{v}\right)\right.$, $\left.s_{j} \in N, j=\overline{1, v}\right\}$. Рассмотрим множество функций

$$
G=\left\{g\left(x_{1}, \ldots, x_{v}\right) \prod_{j=v+1}^{m} e^{i x_{j}}, g \in B_{p, \theta}^{r^{v}}\right\} .
$$

Тогда для $f \in G$ будем иметь

$$
\|f\|_{B_{p, \theta}^{r}}=\left(\sum_{s} 2^{(s, r) \theta}\left\|\delta_{s}(f, x)\right\|_{p}^{\theta}\right)^{1 / \theta}=\left(\sum_{s \in S_{v}} 2^{(s, r) \theta}\left\|\delta_{s}(f, x)\right\|_{p}^{\theta}\right)^{1 / \theta}=
$$

$$
=2^{\sum_{j=v+1^{\prime}}^{m}}\left(\sum_{s \in N^{v}} 2^{\left(s, r^{v}\right) \theta}\left\|\delta_{s}(g, x)\right\|_{p}\right)^{1 / \theta} \ll 1 .
$$

Следовательно, справедливо вложение $C_{1} G \in B_{p, \theta}^{r}, C_{1}>0$, и, таким образом,

$$
\begin{equation*}
e_{M}\left(B_{p, \theta}^{r}, L_{q}\right) \gg e_{M}\left(G, L_{q}\right) . \tag{15}
\end{equation*}
$$

Далее, поскольку

$$
\begin{equation*}
e_{M}\left(G, L_{q}\right) \gg e_{M}\left(B_{p, \theta}^{r^{v}}, L_{q}\right), \tag{16}
\end{equation*}
$$

то, сопоставив (15) и (16), приходим к соотношению

$$
e_{M}\left(B_{p, \theta}^{r}, L_{q}\right) \gg e_{M}\left(B_{p, \theta}^{r v}, L_{q}\right),
$$

откуда вытекает, что для получения оценки снизу достаточно рассмотреть случай $v=m$.

Теперь перейдем непосредственно к установлению оценок снизу.
Пусть $r_{1}=1 / p$. По заданному натуральному числу M подберем число l из соотношения $l=q(\log M) / 2-(m-1)(q-1) \log \log M$ и рассмотрим функцию

$$
g_{1}(x)=\sum_{(s, 1) \leq l} \prod_{j=1}^{m} \sum_{k_{j} \in \rho^{+}\left(s_{j}\right)} \frac{1}{k_{j}} \cos k_{j} x_{j},
$$

где $\rho^{+}\left(s_{j}\right)=\left\{k_{j}: 2^{s_{j}-1} \leq k_{j}<2^{s_{j}}\right\}$. Оценим $\left\|g_{1}\right\|_{B_{p, \theta}^{r}}$. С этой целью воспользуемся. оценкой [11]

$$
\begin{equation*}
\left\|\mathcal{D}_{N_{1}+N_{2}}^{(\beta)}-\mathcal{D}_{N_{1}}^{(\beta)}\right\|_{p}=N_{1}^{\beta} N_{2}^{1-1 / p}, \beta \in R, 1<p<\infty, N_{1} \geq N_{2}, \tag{17}
\end{equation*}
$$

где $\mathcal{D}_{N}=\sum_{k=1}^{N} \cos k t$ - одномерное ядро Дирихле. Полагая в (17) $\beta=-1, N_{1}=$ $=2^{s_{j}}-1, N_{2}=2^{s_{j}-1}$, будем иметь

$$
\begin{equation*}
\left\|\sum_{k_{j} \in \rho^{+}\left(s_{j}\right)} \frac{1}{k_{j}} \cos k_{j} x_{j}\right\|_{p}=2^{-s_{j} / p} \tag{18}
\end{equation*}
$$

и, таким образом, для

$$
\delta_{s}^{+}\left(g_{1}, x\right)=\prod_{j=1}^{m} \sum_{k_{j} \in \rho^{+}\left(s_{j}\right)} \frac{1}{k_{j}} \cos k_{j} x_{j}
$$

в силу (18) получаем

$$
\left\|\delta_{s}^{+}\left(g_{1}, x\right)\right\|_{p}=2^{-(s, 1) / p} .
$$

Поэтому

$$
\left\|g_{1}\right\|_{B_{p, \theta}^{\prime}}=\left(\sum_{(s, 1) \leq l} 2^{(s, 1) \theta / p}\left\|\delta_{s}^{+}\left(g_{1}, x\right)\right\|_{p}\right)^{1 / \theta}=\left(\sum_{(s, 1) \leq l} 1\right)^{1 / \theta}=\left(\sum_{n=1}^{l} n^{m-1}\right)^{1 / \theta} \ll l^{m / \theta},
$$

и, следовательно, функция

$$
\begin{equation*}
f_{1}(x)=C_{2} l^{-m / \theta} g_{1}(x) \tag{19}
\end{equation*}
$$

с некоторой постоянной $C_{2}>0$ принадлежит классу $B_{p, \theta}^{r}$.
Теперь построим функцию $P(x)$, которая удовлетворяла бы условиям соотношения (14). Пусть

$$
\begin{equation*}
v(x)=\sum_{(s, 1) \leq l} \prod_{j=1}^{m} \sum_{k_{j} \in \rho^{+}\left(s_{j}\right)} \cos k_{j} x_{j} \tag{20}
\end{equation*}
$$

и. Ω_{M} - некоторый набор из M векторов $k=\left(k_{1}, \ldots, k_{m}\right), k_{j} \in N, j=\overline{1, m}$. Обозначим через

$$
u(x)=\sum_{k \in \Omega_{M}}^{*} \prod_{j=1}^{m} \cos k_{j} x_{j}
$$

функцию, содержащую только те слагаемые из (20), которые имеют "номера" из множества Ω_{M}, и положим $F(x)=v(x)-u(\dot{x})$.

Оценим $\|F\|_{q^{\prime}}$, учитывая, что $1<q^{\prime}<2\left(q^{\prime}=q /(q-1)\right)$.
Отправляясь от соотношения (17), нетрудно установить, что

$$
\|F\|_{q^{\prime}} \leq\|v\|_{q^{\prime}}+\|u\|_{q^{\prime}} \ll 2^{l / q} l^{(m-1) / q^{\prime}}+\|u\|_{2} \ll 2^{l / q} l^{(m-1) / q^{\prime}}+\sqrt{M .},
$$

откуда следует, что функция

$$
\begin{equation*}
P_{1}(x)=C_{3}\left(2^{l / q} l^{(m-1) / q^{\prime}}+\sqrt{M}\right)^{-1} F(x) \tag{21}
\end{equation*}
$$

с некоторой постоянной $C_{3}>0$ удовлетворяет требованиям соотношения (14).
Из соотношений (19), (21) и (14) получаем оценку

$$
\begin{equation*}
e_{M}\left(B_{p, \theta}^{r}, L_{q}\right) \ggg \frac{\sum_{1}<(s, 1) \leq l}{} \sum_{k \in \rho^{+}(s)} \prod_{j=1}^{m} k_{j}^{-1}, \tag{22}
\end{equation*}
$$

где l_{1} - число, удовлетворяющее условию $2^{l_{1}} l_{1}^{m-1} \simeq M$. Чтобы продолжить оценку (22), заметим, что

$$
\begin{equation*}
\sum_{l_{1}<(s, 1) \leq l} \sum_{k \in \rho^{+}(s)} \prod_{j=1}^{m} k_{j}^{-1}=\sum_{l_{1}<(s, 1) \leq l} 1=\sum_{i=l_{1}}^{l} \sum_{(s, 1)=i+1} 1 \asymp \sum_{i=l_{1}}^{l} i^{m-1} \gg l^{m}, \tag{23}
\end{equation*}
$$

и в силу выбора числа l

$$
\begin{equation*}
2^{l / q} l^{(m-1) / q^{\prime}}+\sqrt{M} \ll 2^{l / q} l^{(m-1) / q^{\prime}} . \tag{24}
\end{equation*}
$$

Таким образом, учитывая (22) - (24), приходим к искомой оценке

$$
e_{M}\left(B_{p, \theta}^{r}, L_{q}\right) \gg \frac{\left(\log ^{m} M\right)^{1 / \theta^{\prime}}}{M^{1 / 2}}
$$

Пусть $r_{1}>1 / p$. Заметим, что в этом случае оценку достаточно получить при $q=2$. По заданному M подберем l таким образом, чтобы для количества элементов множества

$$
F_{l}=\bigcup_{(s, 1) \leq l} \rho(s)
$$

выполнялись соотношения: 1) $\left.\left|F_{l}\right| \geq 2 M ; 2\right)\left|F_{l}\right| \simeq 2^{l} l^{m-1}$ и рассмотрим сту-пенчато-гиперболическое ядро Дирихле

$$
D_{l}(x)=2^{-m} \sum_{(s, 1) \leq l} \sum_{k \in \rho(s)} e^{i(k, x)}
$$

Принимая во внимание, что

$$
\left\|\delta_{s}\left(D_{l}, x\right)\right\|_{p}=\left\|\sum_{k \in \mathcal{P}(s)} e^{i(k, x)}\right\|_{p}=2^{(s, 1)(1-1 / p)},
$$

будем иметь

$$
\begin{gathered}
\left\|D_{l}(x)\right\|_{B_{p, \theta}^{\prime}}=\left(\sum_{(s, 1) \leq l} 2^{(s, r) \theta}\left\|\delta_{s}\left(D_{l}, x\right)\right\|_{p}^{\theta}\right)^{1 / \theta}= \\
=\left(\sum_{(s, 1) \leq l} 2^{(s, r) \theta} 2^{(s, 1)(1-1 / p) \theta}\right)^{1 / \theta} \ll 2^{l\left(r_{1}+1-1 / p\right)} l^{(m-1) / \theta} .
\end{gathered}
$$

Отсюда заключаем, что функция

$$
f_{2}(x)=C_{4} 2^{-l\left(r_{1}+1-1 / p\right)} l^{-(m-1) / \theta} D_{l}(x), C_{4}>0,
$$

принадлежит классу $B_{p, \theta}^{r}$.
Далее, выбрав функцию $P(x)$ в виде (21) и учитывая, что $q=2$, получаем

$$
\begin{aligned}
& e_{M}\left(B_{p, \theta}^{r}, L_{2}\right) \gg \frac{2^{l} l^{m-1}-M}{2^{l\left(r_{1}+1-1 / p\right)} l^{(m-1) / \theta}\left(2^{l / 2} l^{(m-1) / 2}+\sqrt{M}\right)} \gg \\
& \gg \frac{l^{(m-1)(1 / 2-1 / \theta)}}{2^{l\left(r_{1}+1 / 2-1 / p\right)}}=\left(M^{-1} \log ^{m-1} M\right)^{r_{1}+1 / 2-1 / p}\left(\log ^{m-1} M\right)^{1 / 2-1 / \theta}
\end{aligned}
$$

Теорема доказана.
Теорема 2. Пусть $2 \leq p<q<\infty, 1 \leq \theta \leq \infty$. Тогда при $r_{1}>1 / 2$

$$
e_{M}\left(B_{p, \theta}^{r}, L_{q}\right)=M^{-r_{1}}\left(\log ^{v-1} M\right)^{r_{1}+1 / 2-1 / \theta}
$$

Доказательство. Сначала заметим, что оценка сверху следует из соответствующей оценки, полученной в теореме 1 при $p=2$, поскольку $B_{p, \theta}^{r}$ $\subset B_{2, \theta}^{r}$ при $p \geq 2$. Поэтому перейдем к установлению оценки снизу. При этом будем пользоваться таким результатом Рудина - Шапиро (см., например, [12, c.155]): для каждого $k \in N$ найдется полином

$$
R_{k}(x)=\sum_{j=2^{k-1}}^{2^{k}-1} \varepsilon_{j} j^{i j x}, \varepsilon_{j}= \pm 1,
$$

такой, что $\left\|R_{k}(x)\right\|_{\infty} \ll 2^{k / 2}$.
Выберем число l из соображений, аналогичных использованным в предыдущей теореме при $r_{1}>1 / p$, и рассмотрим функцию

$$
g_{2}(x)=\sum_{(s, 1) \leq l} \cdot \prod_{j=1}^{m} R_{s_{j}}\left(x_{j}\right) .
$$

Тогда, учитывая (25), будем иметь

$$
\begin{gathered}
\left\|g_{2}\right\|_{B_{p, \theta}^{\prime}}=\left(\sum_{(s, 1) \leq l} 2^{(s, r) \theta}\left\|\delta_{s}\left(g_{2}, x\right)\right\|_{p}^{\theta}\right)^{1 / \theta} \ll \\
\ll\left(\sum_{(s, 1) \leq l} 2^{(s, r) \theta} 2^{(s, 1) \theta / 2}\right)^{1 / \theta} \approx 2^{l\left(r_{1}+1 / 2\right)}\left(\sum_{(s, 1)=l} 1\right)^{1 / \theta} \asymp 2^{l\left(r_{1}+1 / 2\right)} l^{(m-1) / \theta} .
\end{gathered}
$$

Следовательно, функция

$$
f_{3}(x)=C_{5} 2^{-l\left(r_{1}+1 / 2\right)} l^{-(m-1) / \theta} g_{2}(x), C_{5}>0
$$

принадлежит классу $B_{p, \theta}^{r}$. Пусть, далее,

$$
\begin{aligned}
& v_{1}(x)=\sum_{(s, 1) \leq l} \prod_{j=1}^{m} R_{s_{j}}\left(x_{j}\right) \\
& u_{1}(x)=\sum_{(s, 1) \leq l}^{*} \prod_{j=1}^{m} R_{s_{j}}\left(x_{j}\right)
\end{aligned}
$$

обозначает функцию, содержащую только те слагаемые $v_{1}(x)$, которые имеют "номера" из множества Ω_{M}. Положим $F_{1}(x)=v_{1}(x)-u_{1}(x)$ и оценим $\left\|F_{1}\right\|_{q^{\prime}}$.

Принимая во внимание, что $1<q^{\prime}<2$, будем иметь

$$
\|F\|_{q^{\prime}} \leq\left\|v_{1}\right\|_{2}+\left\|u_{1}\right\|_{2} \ll 2^{l / 2} l^{(m-1) / 2}+\sqrt{M} \ll 2^{l / 2} l^{(m-1) / 2}
$$

и, таким образом, функция

$$
P_{2}(x)=C_{6} 2^{-l / 2} l^{-(m-1) / 2} F_{1}(x), C_{6}>0,
$$

удовлетворяет требованиям правой части (14). Следовательно,

$$
\begin{aligned}
e_{M}\left(B_{p, \theta}^{r}, L_{q}\right) \ggg & \frac{2^{l} l^{m-1}-M}{2^{l\left(r_{1}+1 / 2\right)} l^{(m-1) / \theta} 2^{l / 2} l^{(m-1) / 2}} \gg \frac{2^{l} l^{m-1}}{2^{l\left(r_{1}+1\right)} l^{(m-1)(1 / \theta-1 / 2)}}= \\
& =\frac{l^{(m-1)(1 / 2-1 / \theta)}}{2^{l r_{1}}} \simeq \frac{\left(\log ^{m-1} M\right)^{r_{1}+1 / 2-1 / 8}}{M^{r_{1}}},
\end{aligned}
$$

что и требовалось доказать.
Теорема 3. Пусть $1<p \leq 2<q<\infty, 1 \leq \theta \leq \infty$. Тогда

$$
\tau_{M}\left(B_{p, \theta}^{r}\right)_{q, \infty} \ll \begin{cases}M^{-1 / 2}\left(\log ^{v} M\right)^{1 / \theta^{\prime}}, & r_{1}=1 / p \\ \left(M^{-1} \log ^{v-1} M\right)^{r_{1}-1 / p+1 / 2}\left(\log ^{v-1} M\right)^{1 / 2-1 / \theta}, & r_{1}>1 / p\end{cases}
$$

Доказательство. Оценки в обоих случаях получаются как следствие теоремы 1.

Деиствительно, пусть $r_{1}=1 / p$. Тогда в силу теоремы $1 \forall f \in B_{p, \theta}^{r}$ найдется множество m-мерных векторов ($k^{1}, . ., k^{M}$) и чисел c_{1}, \ldots, c_{M} таких, что

$$
\begin{equation*}
\left\|f-\sum_{j=1}^{M} c_{j} e^{i\left(k^{j}, x\right)}\right\|_{q} \ll M^{-1 / 2}\left(\log ^{v} M\right)^{1 / \theta^{\prime}} \tag{26}
\end{equation*}
$$

С другой стороны,

$$
\begin{gather*}
\left\|f-\sum_{j=1}^{M} c_{j} e^{i\left(k^{j}, x\right)}\right\|_{q}=\left\|f(x-y)-\sum_{j=1}^{M} c_{j} e^{i\left(k^{j}, x-y\right)}\right\|_{q, \infty}= \\
=\left\|f(x-y)-\sum_{j=1}^{M} c_{j} e^{i\left(k^{j}, x\right)} e^{-i\left(k^{j}, y\right)}\right\|_{q, \infty} \cdot \tag{27}
\end{gather*}
$$

Полагая в последней сумме

$$
u_{j}(x)=c_{j} e^{i\left(k^{j}, x\right)}, v_{j}(y)=c_{j} e^{-i\left(k^{j}, y\right)}
$$

и сопоставляя (26) и (27), получаем искомую оценку.

Теорема 4. Пусть $1<p<2, r_{1}>1 / p-1 / 2$. Тогда

$$
\tau_{M}\left(B_{p, \theta}^{r}\right)_{2,1} \ggg \frac{\left(\log ^{\mathrm{v}-1} M\right)^{\gamma_{1}-1 / p+1 / \theta^{\prime}}}{M^{r_{1}-1 / p+1 / 2}} .
$$

Доказательство. Как отмечалось, искомую оценку достаточно получить для $v=m$.

Пусть задано натуральное число M, а число n таково, что для количества элементов множества

$$
\begin{equation*}
F_{n}=\bigcup_{\|s\|_{1}=n} \rho(s) \tag{28}
\end{equation*}
$$

выполнены соотношения:

$$
\begin{equation*}
\text { 1) }\left|F_{n}\right|>4 M ; \quad \text { 2) }\left|F_{n}\right|=2^{n} n^{m-1} \text {. } \tag{29}
\end{equation*}
$$

Рассмотрим функцию

$$
\begin{equation*}
f_{4}(x)=2^{-n\left(r_{1}+1-1 / p\right)} n^{-(m-1) / \theta} \sum_{k \in F_{n}} e^{i(k, x)}=2^{-n\left(r_{1}+1-1 / p\right)} n^{-(m-1) / \theta} d(x) . \tag{30}
\end{equation*}
$$

Поскольку

$$
\begin{gathered}
\left\|f_{4}\right\|_{p_{p, 0}^{r}}=\left(\sum_{(s, 1)=n} 2^{(s, r) \theta}\left\|\delta_{s}\left(f_{4}, x\right)\right\|_{p}^{\theta}\right)^{1 / \theta}=2^{-n\left(r_{1}+1-1 / p\right)} n^{-(m-1) / \theta} \times \\
\times\left(\sum_{(s, 1)=n} 2^{(s, r) \theta}\left\|\delta_{s}(d, x)\right\|_{p}^{\theta}\right)^{1 / \theta}=2^{-n\left(r_{1}+1-1 / p\right)} n^{-(m-1) / \theta} \times \\
\times\left(\sum_{(s, 1)=n} 2^{r_{1}(s, 1) \theta} 2^{(s, 1)(1-1 / p) \theta}\right)^{1 / \theta} \ll 1,
\end{gathered}
$$

то $f_{4} \in C_{7} B_{p, \theta}^{r}, C_{7}>0$. Далее, для оценки $\tau_{M}\left(f_{4}\right)_{2,1}$ воспользуемся вспомогательным утверждением [5, с.93].

Лемма Б. Пусть множество F_{n} удовлетворяет условиям (28) и (29). Тогда для любой функции

$$
w(x)=\sum_{k \in F_{n}} c_{k} e^{i(k, x)},\left|c_{k}\right|=1,
$$

справедливо

$$
\inf _{u_{i}(x), v_{i}(y)}\left\|w(x-y)-\sum_{i=1}^{M} u_{i}(x) v_{i}(y)\right\|_{2,1} \gg M^{1 / 2} .
$$

Таким образом, поскольку функция $d(x)$ удовлетворяет условиям леммы Б, то $\tau_{M}(d)_{2,1} \gg M^{1 / 2}$, и следовательно,

$$
\tau_{M}\left(f_{4}\right)_{2,1}=2^{-n\left(r_{1}+1-1 / p\right)} n^{-(m-1) / \theta} \tau_{M}(d)_{2,1} \gg \frac{\left(\log ^{m-1} M\right)^{r_{1}-1 / p+1 / \theta^{\prime}}}{M^{r_{1}+1 / 2-1 / p}} .
$$

Теорема доказана.
Как следствие из теорем 3 и 4 получаем следующее утверждение.
Следствие 1. Пусть $1<p<2,1 \leq \theta \leq \infty$ и $r_{1}>1 / p$. Тогда при $2 \leq q_{1}<\infty$, $1 \leq q_{2} \leq \infty$

$$
\tau_{M}\left(B_{p, \theta}^{r}\right)_{q_{1}, q_{2}}=\frac{\left(\log ^{\mathrm{V}-1} M\right)^{r_{1}-1 / p+1 / \theta^{\prime}}}{M^{r_{1}-1 / p+1 / 2}} .
$$

В заключение приведем две теоремы и следствие из них, которые являются аналогами теорем 3,4 и следствия 1 при других соотношениях между параметрами p и q.

Теорема 5. Пусть $2 \leq p<q<\infty, 1 \leq \theta \leq \infty$. Тогда

$$
\tau_{M}\left(B_{p, \theta}^{r}\right)_{q, \infty} \ll \begin{cases}M^{-1 / 2}\left(\log ^{v} M\right)^{1 / \theta^{\prime}}, & r_{1}=1 / 2 \\ \left(M^{-1} \log ^{v-1} M\right)^{r_{1}}\left(\log ^{v-1} M\right)^{1 / 2-1 / \theta}, & r_{1}>1 / 2\end{cases}
$$

Теорема 6. Пусть $2 \leq p<\infty, 1 \leq \theta \leq \infty, r_{1}>0$. Тогда

$$
\tau_{M}\left(B_{p, \theta}^{r}\right)_{2,1} \gg M^{-r_{1}}\left(\log ^{v-1} M\right)^{r_{1}+1 / 2-1 / \theta}
$$

Следствие 2. Пусть $1 \leq \theta \leq \infty$ и $r_{1}>1 / 2$. Тогда при $2 \leq q_{1}<\infty, 1 \leq q_{2} \leq$ $\leq \infty, 2 \leq p \leq q_{1}$

$$
\tau_{M}\left(B_{p, \theta}^{r}\right)_{q_{1}, q_{2}}=\frac{\left(\log ^{v-1} M\right)^{r_{1}+1 / 2-1 / \theta}}{M^{r_{1}}}
$$

Отметим, что схема доказательств теорем 5 и 6 аналогична примененной в теоремах 3,4 . Только при доказательстве теоремы 6 нужно вместо функции $f_{4}(x)$ из (30) рассмотреть функцию

$$
f_{5}(x)=2^{-n\left(r_{1}+1 / 2\right)} n^{-(m-1) / \theta} \sum_{(s, 1)=n} \prod_{j=1}^{m} R_{s_{j}}\left(x_{j}\right)
$$

где n подобрано так, чтобы выполнялись соотношения (28) и (29).
Некоторые из изложенных в работе результатов анонсированы в [13].

1. Романюк А. С. Приближение классов Бесова периодических функций многих переменных в пространстве $L_{q} / /$ Укр. мат. журн.- 1991.- 43, №10.- С. 1398-1408.
2. Никольский С. М. Приближение функций многих переменных и теоремы вложения.- М.: Наука, 1989.- 480 с.
3. Стечкин С. Б. Об абсолютной сходимости ортогональных рядов // Докл. АН СССР.-1955.- 102, № 1.- C. 37-40.
4. Кашин Б. С. об аппроксимационных свойствах полных ортонормированных систем // Tp. Мат. ин-та АН СССР.- 1985.- 172.- С. 187-191.
5. Темляков В. Н. Приближение функций с ограниченной смешанной производной // Там же.- 1986.- 178.- 112 с.
6. Белинский Э. С. Приближение плавающей системой экспонент на классах периодических гладких функций // Там же.- 1987.- 180.- С. 46-47.
7. Белинский Э. С. Приближение плавающей системой экспонент на классах периодических функций с ограниченной смешанной производной // Исследования по теории функций многих вещественных переменных.- Ярославль: Ярослав. ун-т, 1988.- С. 16-33.
8. Schmidt E. Zur Theorie der linearen und nichtlinearen Integralgleichungen. I // Math. Ann.- 1907.-63.-P. 433-476.
9. Бабаев М.-Б. А. О порядке приближения соболевского класса W_{q}^{r} билинейными формами в L_{p} при $1 \leq q \leq p \leq 2 / /$ Мат. сб.- 1991.- 182, №1.- С. 122-129.
10. Корнейчук Н. П. Точные константы в теории приближения.- М.: Наука, 1987.- 424 с.
11. Галеев Э. М. Порядковые оценки производных периодического многомерного α-ядра Дирихле в смешанной норме // Мат. сб.- 1982.- 117, №1.- С. 32-43.
12. Каиин Б. С., Саакян А. А. Ортогональные ряды.- М.: Наука, 1984.- 495 с.
13. Романюк А. С. Приближение классов периодических функций многих переменных $B_{p, \theta}^{r}$ в пространстве Lq.- Киев, 1990.-47 с.- (Препринт / АН Украины. Ин-т математики; 90.30).

Получено 17.01. 92

