Н. И. Ронто, д-р физ.-мат. наук,
Т. В. Путятина, асп. (Ин-т математики АН Украины, Киев)

ПРИМЕНЕНИЕ МЕТОДА КОЛЛОКАЦИИ К МНОГОТОЧЕЧНЫМ КРАЕВЫМ ЗАДАЧАМ С ИНТЕГРАЛЬНЫМИ КРАЕВЫМИ УСЛОВИЯМИ

Обосновывается метод алгебраической коллокации для приближенного построения решений систем нелинейных обыкновенных дифференциальных уравнений в случае линейных многоточечных краевых условий, содержащих определенные интегралы.

Обгрунтовується метод алгебраїчної колокації для наближеної побудови розв'язків систем нелінійних звичайних диференціальних рівнянь у випадку лінійних багатоточкових крайових умов, що містять означені інтеграли.

Сходимость метода алгебраической и тригонометрической коллокации для нелинейных краевых задач в случае двухточечных и многоточечных краевых условий иззучалась в [1, 2]. В данной работе этот метод распространяется на более общий тип задач, когда краевые условия содержат функционалы с интегральными слагаемыми.

Пусть требуется пайти решение системы уравнений

$$
\begin{equation*}
\frac{d x}{d t}=f(t, x), t \in[a, b], x \in E_{n} \tag{1}
\end{equation*}
$$

удовлетворяющее краевым условиям

$$
\begin{equation*}
\sum_{i=0}^{q} A_{i} x\left(\tau_{i}\right)+\int_{a}^{T} B(s) x(s) d s=d, T \in(a, b] \tag{2}
\end{equation*}
$$

где $x=\left(x_{1}, \ldots, x_{n}\right) \in E_{n}, f(t, x)=\left(f_{1}(t, x), \ldots, f_{n}(t, n)\right)$ - вектор-функция со значениями в E_{n}, определенная и непрерывная по t, x для $t \in[a, b], x \in D \subset E_{n}$, D - замкнутая ограниченная область пространства $E_{n} ; B(s)-(n \times n)$-мерная матрица с непрерывными на $[a, b]$ коэффициентами; $A_{i}, i=0,1,2, \ldots, q$, заданные постоянные ($n \times n$)-мерные матрицы такие, что

$$
\operatorname{det}\left(R=\sum_{i=0}^{q} A_{i}+B_{0}\right) \neq 0, B_{0}=\int_{a}^{T} B(s) d s, T \in(a, b] ;
$$

$d=\left(d_{1}, \ldots, d_{n}\right)$ - заданный постоянный вектор.
Решение поставленной задачи ищем приближенно в виде векторного полинома степени $m+1$

$$
x_{m}(t)=Q_{0}+\sum_{k=1}^{m+1} Q_{k} t^{k}
$$

удовлетворяющего краевому условию (2):

$$
\begin{equation*}
\sum_{i=0}^{q} A_{i} x_{m}\left(t_{i}\right)+\int_{a}^{T} B(s) x_{m}(s) d s=d \tag{3}
\end{equation*}
$$

при произвольных значениях векторных коэффициентов $Q_{k}=\left(Q_{k 1}, \ldots, Q_{k n}\right), k=$ $=1,2, \ldots, m+1$. Из условия (3) определяется коэффициент

$$
Q_{0}=R^{-1} d+R^{-1} \sum_{k=1}^{m+1} H_{k} Q_{k}-R^{-1} \sum_{k=1}^{m+1} B_{k} Q_{k},
$$

где

$$
H_{k}=-\sum_{i=0}^{q} A_{i} \tau_{i}^{k}, B_{k}=\int_{a}^{T} B(s) s^{k} d s, T \in(a, b], k=0,1, \ldots, m+1 .
$$

Для существования Q_{0} необходимо и достаточно выполнения неравенства

$$
\operatorname{det}\left(R=\sum_{i=0}^{q} A_{i}+B_{0}\right) \neq 0 .
$$

Итак, для приближенного решения $x_{m}(t)$ получаем следующее представление:

$$
\begin{gather*}
x_{m}(t)=R^{-1} d+R^{-1} \sum_{k=1}^{m+1} H_{k} Q_{k}-R^{-1} \sum_{k=1}^{m+1} B_{k} Q_{k}+\sum_{k=1}^{m+1} Q_{k} t^{k}, \\
B_{k}=\int_{a}^{T} B(s) s^{k} d s, T \in(a, b], k=0,1 \ldots, m+1, \tag{4}\\
H_{k}=-\sum_{i=0}^{q} A_{i} \tau_{i}^{k}, a=\tau_{0}<\tau_{1}<\ldots<\tau_{q}=b .
\end{gather*}
$$

Неизвестные векторные коэффициенты $Q_{k}, k=1, \ldots, m+1$, согласно общеи схеме метода коллокации определяются из условия обращения в нуль невязки $d x_{m}(t) / d t-f\left(t, x_{m}(t)\right)$ в фиксированных $(m+1)$ точках коллокации $t_{0}, t_{1}, \ldots, t_{m}$, т.е. из системы нелинейных алгебраических или траисцешдентных уравиений

$$
\begin{equation*}
\frac{d x_{m}\left(t_{i}\right)}{d t}=f\left(t, x_{m}\left(t_{i}\right)\right), i=0,1, \ldots, m \tag{5}
\end{equation*}
$$

Выберем в качестве узлов коллокации $t_{i}, i=0,1, \ldots, m$, корни многочлена ($m+$ $+1)$ степени $P_{m+1}(t, \rho)$, принадлежащего системе ортогональных с весом $\rho(t)$ на отрезке $[a, b]$ полиномов, где $\rho(t)$ - неотрицательная суммируемая функция, для которой $\int_{a}^{b} \frac{d s}{\rho(s)}<\infty$. Известно [3], что полином $P_{m+1}(t, \rho)$ имеет на отрезке $[a, b]$ ровно $(m+1)$ различных действительыых кориеи.

Предположим, что краевая задача (1), (2) имеет решение $x^{0}(t)$, принадлежащее области D вместе с некоторой своей окрестностью. Выясним условия, при которых система уравнений (5) разрешима, и оценим отклонение приближенного решения $x_{m}(t)$ от точного решения $x^{0}(t)$.

Будем обозначать через $C[a, b]$ пространство непрерывных на отрезке $[a, b]$ вектор-функций

$$
\begin{equation*}
x(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right) \tag{6}
\end{equation*}
$$

с нормой

$$
|x(t)|_{C}=\max _{i=1, \cdots, n} \max _{t \in[a, b]}\left|x_{i}(t)\right|=\max _{i=1, \cdots, n}\left|x_{i}(t)\right|_{0}
$$

и понимать под $|x(t)|_{0}$ вектор

$$
|x(t)|_{0}=\left(\max _{t \in[a, b]}\left|x_{1}(t)\right|, \cdots, \max _{t \in[a, b]}\left|x_{n}(t)\right|\right)
$$

Рассмотрим также пространство $L_{\rho}^{2}[a, b]$ квадратично суммируемых с весом $\rho(t)$ на отрезке $[a, b]$ вектор-функций, для которых посредством $|x(t)|_{2}$ будем обозначать норму

$$
|x(t)|_{2}=\max _{i=1, \cdots, n}\left[\int_{a}^{b} \rho(s)\left|x_{i}(s)\right|^{2} d s\right]^{1 / 2} .
$$

Неравенства между векторами понимаем покомпонентно. Для вектор-функции (6) наилучшим равномерным приближением $E_{m}(x)$ будем считать вектор $E_{m}(x)=\left(E_{m}\left(x_{1}\right), \ldots, E_{m}\left(x_{n}\right)\right)$, где $E_{m}\left(x_{k}\right)$ - наилучшее равномерное приближение функции $x_{k}(t)$, а $E_{m}^{0}(x)=\max _{k=1, \ldots, n} E_{m}\left(x_{k}\right)$.

Справедливо следующее утверждение.
Теорема. Предположим, что:

1) краевая задача (1), (2) имет решение $x^{0}=x^{0}(t)$;
2) функция $f(t, x)$ и матрица Якоби $(\partial f(t, x) / \partial x)=F(t, x)$ определены и непрерывны при

$$
\begin{equation*}
t \in[a, b],\left|x-x^{0}\right|_{C} \leq \delta, \delta>0 ; \tag{7}
\end{equation*}
$$

3) система уравнений в вариациях относительно решения $x^{0}(t)$

$$
\begin{equation*}
\frac{d x}{d t}=F\left(t, x^{0}\right) x \tag{8}
\end{equation*}
$$

при однородных краевых условиях (2) имеет лишь нулевое решение;
4) матрицы $A_{i}, i=0,1,2, \ldots, q, B(s)$ такие, что

$$
\operatorname{det}\left(R=\sum_{i=0}^{q} A_{i}+B_{0}\right) \neq 0, B_{0}=\int_{a}^{T} B(s) d s, T \in(a, b] .
$$

Тогда:

1) можно указать такое $\alpha>0$, что в шиаре

$$
\begin{equation*}
\left|\frac{d x}{d t}-\frac{d x^{0}}{d t}\right|_{2} \leq \alpha \tag{9}
\end{equation*}
$$

абсолютно непрерывных на $[a, b]$ функций $x(t)$ решение краевой задачи $x^{0}(t)$ единственно;
2) при достаточно больиих m ($m \geq m_{0}$) метод коллокации (5), (4) определяет в (9) единственное приближенное решение $x_{m}=x_{m}(t)$ вида (4);
3) последовательность приближений $x_{m}(t)$ равномерно, $a d x_{m}(t) / d t$ в метрике $L_{\mathrm{p}}^{2}[a, b]$ сходится при $m \rightarrow \infty$ соответственно к $x^{0}(t) u d x^{0}(t) / d t$, причем

$$
\begin{gather*}
\left|x_{m}(t)-x^{0}(t)\right|_{C} \leq c_{1} E_{m}^{0}\left(\frac{d x^{0}}{d t}\right) \tag{10}\\
\left|\frac{d x_{m}(t)}{d t}-\frac{d x^{0}(t)}{d t}\right|_{2} \leq c_{2} E_{m}^{0}\left(\frac{d x^{0}}{d t}\right), \tag{11}
\end{gather*}
$$

$$
E_{m}^{0}\left(\frac{d x^{0}}{d t}\right)=\max _{i=1, \ldots, n} E_{m}^{0}\left(\frac{d x_{i}^{0}}{d t}\right)
$$

где $\quad E_{m}^{0}\left(\frac{d x_{i}^{0}}{d t}\right)$ - наилучшее равномерное приближение функции $d x_{i}^{0} / d t$ многочленом степени не выше $m ; c_{1}, c_{2}$ - не зависящие от m константы.

Доказательство основано на сведении исходной краевой задачи и системы уравнений (5) к двум равносильным им операторным уравнениям в .пространстве $L_{p}^{2}[a, b]$ с последующим применением к ним теоремы 3.1 из [1]. Для этого введем в рассмотрение функцию Грина $G(t, s)$ краевой задачи для системы уравнений $d x / d t=0$ при однородных краевых условиях

$$
\sum_{i=0}^{q} A_{i} x\left(\tau_{i}\right)+\int_{a}^{T} B(s) x(s) d s=0, T \in(a, b], a=\tau_{0}<\tau_{1}<\ldots<\tau_{q}=b
$$

Можно показать, что эта функция имеет вид

$$
G(t, s)=\left\{\begin{array}{cc}
-\left(\sum_{i=0}^{q} F_{i}+H_{1}(s)+H_{2}(s)\right)^{-1}\left[\sum_{i=k}^{q} F_{i}+H_{2}(s)\right], & t \in[a, s), \tau_{k-1} \leq s \leq \tau_{k}, \tag{12}\\
E-\left(\sum_{i=0}^{q} F_{i}+H_{1}(s)+H_{2}(s)\right)^{-1}\left[\sum_{i=k}^{q} F_{i}+H_{2}(s)\right], & t \in(s, b], \tau_{k-1} \leq s \leq \tau_{k}
\end{array}\right.
$$

Из (12) следует, что оператор G

$$
\begin{equation*}
G v=R^{-1} d+\int_{a}^{b} G(t, s) v(s) d s \tag{13}
\end{equation*}
$$

является линейным вполне непрерывным оператором из $L_{p}^{2}[a, b]$ в пространство $C[a, b]$.

Положим $\nu^{0}(t)=d x^{0}(t) / d t$. Тогда

$$
\begin{equation*}
x^{0}=G \nu^{0} \tag{14}
\end{equation*}
$$

Ввиду ограниченности оператора G в пространстве $L_{p}^{2}[a, b]$ можем выбрать шар

$$
\begin{equation*}
\left|v-v^{0}\right|_{2} \leq \alpha \tag{15}
\end{equation*}
$$

столь малого радиуса α, чтобы функции $x=G v$ удовлетворяли условию (7).
Зададим в шаре (15) пространства $L_{p}^{2}[a, b]$ оператор K, переводящий функции $v(t)$ из этого шара в шар пространства $C[a, b]$ по формуле

$$
K v=f\left(t, \int_{a}^{b} G(t, s) v(s) d s+R^{-1} d\right)
$$

Из непрерывности вектор-функции $f(t, x)$ и вполне непрерывности оператора G следует, что оператор K в области (15) является вполне непрерывным.

Обозначим через P оператор вложения пространства $C[a, b]$ в простран-

ство $L_{p}^{2}[a, b]$. Тогда задача (1), (2) равносильна операторному уравнению

$$
\begin{equation*}
v=P K v, \tag{16}
\end{equation*}
$$

решаемому в пространстве $L_{\mathrm{p}}^{2}[a, b]$.
Так как P - оператор вложения, то он является линейным и непрерывным. Решения исходной краевой задачи и операторного уравнения (16), очевидно, связаны соотношением (14).

Положив $v_{m}=d x_{m}(t) / d t$, получим

$$
\begin{equation*}
x_{m}=G v_{m} . \tag{17}
\end{equation*}
$$

Тогда систему алгебраических уравнений метода коллокации (5) можно записать в виде

$$
\begin{equation*}
P_{m} v_{m}=P_{m} K v_{m}, \tag{18}
\end{equation*}
$$

где P_{m} - линейный оператор, сопоставляющий каждой непрерывной на $[a, b]$ функции ее интерполяционный многочлен Лагранжа степени не выше m, построенный по рассматриваемым узлам, которые являются корнями ортогонального многочлена $P_{m+1}(t, \rho)$.

По теореме Эрдеш - Туран [4] интерполяционный многочлен Лагранжа любой непрерывной функции, построенный по выбранным узлам $t_{0}, t_{1}, \ldots, t_{m}$, среднеквадратически с весом $\rho(t)$ стремится к приближаемой функции, т.е. операторы $P_{m}: C[a, b] \rightarrow L_{\mathrm{p}}^{2}[a, b]$ сильно стремятся к оператору P. Тогда по теореме Банаха - Штейнгауза [5] нормы операторов P_{m} ограничены:

$$
\begin{equation*}
\left\|P_{m}\right\| \leq c_{4}=\text { const, } m=0,1,2, \ldots . \tag{19}
\end{equation*}
$$

Так как $x_{m}(t)$ - полином степени $(m+1)$, то $\quad v_{m}(t)=d x_{m}(t) / d t$ - полином степени не выше m. Поэтому

$$
\begin{equation*}
P_{m} v_{m}=v_{m}, \tag{20}
\end{equation*}
$$

а это позволяет записать операторное уравнение (18) в виде

$$
\begin{equation*}
v_{m}=P_{m} K v_{m} . \tag{21}
\end{equation*}
$$

Из предположения о том, что система уравнений (8) при однородных краевых условиях (2) имеет только тривиальное решение, следует, что уравнение

$$
\begin{equation*}
v-P K^{\prime}\left(\nu^{0}\right) v=0, \tag{22}
\end{equation*}
$$

где $K^{\prime}(v)=(\partial f(t, G v) / \partial x) G$, имеет тоже лишь тривиальное решение. Из непрерывности матрицы Якоби $F(t, x)$ в области (7) следует непрерывная дифференцируемость оператора K в шаре $\left|v-v^{0}\right|_{2} \leq \alpha$. Таким образом, для операторных уравнений (16) и (21) выполняются все условия теоремы 3.1 [1]. (Изолированность решения v^{0} вытекает из того, что уравнение (22) имеет лишь нулевое решение [6].)

Из утверждений теоремы 3.1 [1] следует:

1) решение $v=v^{0}$ уравнения (16) единственно в шаре (15);
2) при достаточно больших $m \geq m_{0}$ уравнение (21) также имеет в шаре I v -$-\nu^{0} I_{2} \leq \alpha$ единственное решение v_{m}, стремящееся к ν^{0} при $m \rightarrow \infty$ по норме пространства $L_{\mathrm{p}}^{2}[a, b]$:

$$
\begin{equation*}
\left|v_{m}-v^{0}\right|_{2} \xrightarrow[m \rightarrow \infty]{ } 0 ; \tag{23}
\end{equation*}
$$

3) для отклонения v_{m} от v^{0} верна оценка

$$
\begin{equation*}
\left|v_{m}-v^{0}\right|_{2} \leq c_{3}\left|\left(P_{m}-P\right) K v^{0}\right|_{2}=c_{3}\left|v^{0}-P_{m} P^{-1} v^{0}\right|_{2}, m \geq m_{0} \tag{24}
\end{equation*}
$$

Пусть $p_{m}(t)=\left(p_{m 1}(t), \ldots, p_{m n}(t)\right)$ - произвольный векторный многочлен степени не выше m. Тогда $P_{m} P^{-1} p_{m}(t)=p_{m}(t)$, и из неравенства (24) вытекает доказываемое соотношение (11):

$$
\begin{aligned}
& \mid v_{m}-v^{0} I_{2} \leq c_{3}\left(\left|v^{0}(t)-p_{m}(t) I_{2}+\right| P_{m} P^{-1}\left(v^{0}-p_{m}(t)\right) I_{2}\right)= \\
& =c_{3} \max _{i=1, \ldots, n}\left(\left|v_{i}^{0}(t)-p_{m i}(t)\right|_{2}+\mid P_{m} P^{-1}\left(v_{i}^{0}-p_{m i}(t)\right) I_{2}\right) \leq \\
& \left.\leq c_{3} \max _{i=1, \ldots, n}\left|v_{i}^{0}(t)-p_{m i}(t)\right|_{0}\left[\int_{a}^{b} \rho(s) d s\right)^{1 / 2}+c_{4}\right] \leq \\
& \leq c_{3}\left[\left(\int_{a}^{b} \rho(s) d s\right)^{1 / 2}+c_{4}\right] \max _{i=1, \ldots, n} E_{m}\left(v_{i}^{0}\right) \leq c_{2} E_{m}^{0}\left(v^{0}\right) .
\end{aligned}
$$

Для получения оценки (10) учтем соотношение

$$
\begin{equation*}
x_{m}(t)-x^{0}(t)=\int_{a}^{b} G(t, s)\left(v_{m}(s)-v^{0}(s)\right) d s \tag{25}
\end{equation*}
$$

в силу которого

$$
\begin{align*}
& \left|x_{m}(t)-x^{0}(t)\right|_{C}=\max _{i=1, \ldots, n}\left|x_{m i}(t)-x_{i}^{0}(t)\right|_{0}= \\
= & \max _{i=1, \ldots, n}\left|\sum_{j=1}^{n} \int_{a}^{b} G_{i j}(t, s)\left(v_{m j}(s)-v_{j}^{0}(s)\right) d s\right|_{0}= \\
= & \max _{i=1, \ldots, n}\left|\sum_{j=1}^{n} \int_{a}^{b} \frac{G_{i j}(t, s)}{\sqrt{\rho(s)}} \sqrt{\rho(s)}\left(v_{m j}(s)-v_{j}^{0}(s)\right) d s\right|_{0}, \tag{26}
\end{align*}
$$

где $G_{i j}(t, s)$ - элементы матрицы Грина $G(t, s)$.
Воспользовавшись неравенством Коши - Буняковского, из соотношения (26) получаем

$$
\left|x_{m}(t)-x^{0}(t)\right|_{C} \leq \max _{i=1, \ldots, n}\left|\sum_{j=1}^{n}\left(\int_{a}^{b} \frac{\left|G_{i j}(t, s)\right|^{2}}{\rho(s)} d s\right)^{1 / 2}\right| v_{m j}-\left.\left.v_{j}^{0}\right|_{2}\right|_{0}
$$

Положим

$$
\max _{j=1, \ldots, n}\left|\left(\int_{a}^{b} \frac{\left|G_{i j}(t, s)\right|^{2}}{\rho(s)} d s\right)^{1 / 2}\right|_{0}=c_{i}
$$

тогда

$$
\left|x_{m}(t)-x^{0}(t)\right|_{C} \leq \max _{i=1, \ldots ., n} c_{i}\left(\sum_{j=1}^{n}\left|v_{m j}-v_{j}^{0}\right|_{2}\right)
$$

и следовательно,

$$
\left|x_{m}(t)-x^{0}(t)\right|_{C} \leq \max _{i=1, \ldots, n} c_{i}\left(n c_{2} E_{m}^{0}\left(\nu^{0}\right)\right)=c_{1} E_{m}^{0}\left(\nu^{0}\right) .
$$

Это и завершает доказательство теоремы.
Проиллюстрируем приведенную выше схему метода коллокации на конкретном примере.

Пусть на отрезке $[0,1]$ требуется найти решение системы дифференниальных уравнений

$$
\begin{align*}
& \dot{x}_{1}=x_{1}-t x_{2}+t e^{t} \\
& \dot{x}_{2}=x_{1} x_{2}-t x_{1}+1 \tag{27}
\end{align*}
$$

удовлетворяющее краевым условиям

$$
\left(\begin{array}{ll}
1 & 0 \tag{28}\\
0 & 1
\end{array}\right) x(0)+\left(\begin{array}{cc}
0 & 0 \\
-1 & 1
\end{array}\right) x(1)+\int_{0}^{1}\left(\begin{array}{cc}
-1 & 2 \\
0 & 0
\end{array}\right) x(s) d s=\left[\begin{array}{c}
3-e \\
1-e
\end{array}\right]
$$

Приближенное решение краевой задачи (27), (28) находим в виде (4). При $m=2$ оно задается формулой

$$
x_{2}(t)=R^{-1} d-R^{-1}\left[\sum_{k=1}^{3}\left(A_{1} a^{k}+A_{2} b^{k}\right) Q_{k}\right]-R^{-1} \sum_{k=1}^{3} B_{k} Q_{k}+\sum_{k=1}^{3} Q_{k} t^{k}
$$

где

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), A_{2}=\left(\begin{array}{cc}
0 & 0 \\
-1 & 1
\end{array}\right), B_{k}=\int_{0}^{1} B(s) s^{k} d s, k=0,1,2,3, \\
& B(s)=\left(\begin{array}{cc}
-1 & 2 \\
0 & 0
\end{array}\right), R=A_{1}+A_{2}+B_{0}, d=\left[\begin{array}{l}
3-e \\
1-e
\end{array}\right], a=0, b=1 .
\end{aligned}
$$

Проделав необходимые вычисления, с учетом того, что $Q_{1}=\left[\begin{array}{l}Q_{11} \\ Q_{12}\end{array}\right], Q_{2}=\left[\begin{array}{l}Q_{21} \\ Q_{22}\end{array}\right]$, $Q_{3}=\left[\begin{array}{l}Q_{31} \\ Q_{32}\end{array}\right]$, получим следующую формулу для вычисления приближеного решения:

$$
x_{2}(t)=\left[\begin{array}{l}
Q_{01} \tag{29}\\
Q_{02}
\end{array}\right]+\left[\begin{array}{l}
Q_{11} \\
Q_{12}
\end{array}\right] t+\left[\begin{array}{l}
Q_{21} \\
Q_{22}
\end{array}\right] t^{2}+\left[\begin{array}{l}
Q_{31} \\
Q_{32}
\end{array}\right] t^{3},
$$

где

$$
\begin{gathered}
Q_{01}=2-\frac{1}{2} Q_{11}-\frac{2}{3} Q_{21}-\frac{3}{4} Q_{31}+\frac{1}{3} Q_{22}+\frac{1}{2} Q_{32}, \\
Q_{02}=\frac{3}{2}-\frac{1}{2} e+\frac{1}{4} Q_{11}-\frac{1}{2} Q_{12}+\frac{1}{6} Q_{21}-\frac{1}{3} Q_{22}+\frac{1}{8} Q_{31}-\frac{1}{4} Q_{32} .
\end{gathered}
$$

Выберем в качестве узлов коллокации t_{1}, t_{2}, t_{3} корни многочлена Чебышева первого рода $T_{3}(t)=4 t^{3}-3 t$, отнесенные к отрезку $[0,1]$. Этот многочлен на отрезке $[-1,1]$ имеет три корня $t_{1}^{\prime}=-\sqrt{3} / 2, t_{2}^{\prime}=0, t_{3}^{\prime}=\sqrt{3} / 2$. Применяя преобразование $t=\frac{1}{2}\left(1+t^{\prime}\right)$, получаем нужные точки на отрезке $[0,1]: t_{1}=$ $=0,0669873 ; t_{2}=0,5 ; t_{3}=0,9330127$.

Согласно схеме метода коллокации неизвестные коэффициенты $Q_{k}, k=1$, 2,3 , определяются из системы уравнений (5), которая для краевой задачи (27), (28) принимает вид

$$
\begin{aligned}
& \left(Q_{11}+2 Q_{21} t_{i}+3 Q_{31} t_{i}^{2}\right)=\left(2-\frac{1}{2} Q_{11}-\frac{2}{3} Q_{21}-\frac{3}{4} Q_{31}+\frac{1}{3} Q_{22}+\frac{1}{2} Q_{32}+\right. \\
& \left.+Q_{11} t_{i}+Q_{21} t_{i}^{2}+Q_{31 t_{i}^{3}}\right)-t_{i}\left(\frac{3}{2}-\frac{1}{2} e+\frac{1}{4} Q_{11}-\frac{1}{2} Q_{12}+\frac{1}{6} Q_{21}-\frac{1}{3} Q_{22}+\right. \\
& +\frac{1}{8} Q_{31}-\frac{1}{4} Q_{32}+Q_{12} t_{i}+Q_{22} t_{i}^{2}+Q_{\left.32 t_{i}^{3}\right)+t_{i} t_{i}, i=1,2,3 ;}^{\left(Q_{12}+2 Q_{22} t_{i}+3 Q_{32} t_{i}^{2}\right)=\left(2-\frac{1}{2} Q_{11}-\frac{2}{3} Q_{21}-\frac{3}{4} Q_{31}+\frac{1}{3} Q_{22}+\frac{1}{2} Q_{32}+\right.} \\
& +Q_{11} t_{i}+Q_{21} t_{i}^{2}+Q_{\left.31 t_{i}^{3}\right)\left(\frac{3}{2}-\frac{1}{2} e+\frac{1}{4} Q_{11}-\frac{1}{2} Q_{12}+\frac{1}{6} Q_{21}-\frac{1}{3} Q_{22}+\right.}^{\left.+\frac{1}{8} Q_{31}-\frac{1}{4} Q_{32}+Q_{12} t_{i}+Q_{22} t_{i}^{2}+Q_{32 t_{i}^{3}}^{3}\right)-t_{i}\left(2-\frac{1}{2} Q_{11}-\frac{2}{3} Q_{21}-\right.} \\
& \left.-\frac{3}{4} Q_{31}+\frac{1}{3} Q_{22}+\frac{1}{2} Q_{32}+Q_{11} t_{i}+Q_{21} t_{i}^{2}+Q_{31 t_{i}^{3}}\right)+1, \quad i=1,2,3 ;
\end{aligned}
$$

где $t_{1}=0,0669873 ; t_{2}=0,5 ; t_{3}=0,9330127$. Решая эти уравнения, для компонент неизвестных векторов получаем

$$
\begin{aligned}
& Q_{11}=0,711 ; Q_{21}=0,499 ; Q_{31}=0,818 ; \\
& Q_{12}=0,985 ; Q_{22}=0,135 ; Q_{32}=-0,142 .
\end{aligned}
$$

Следовательно, согласно (29) приближенное решение краевой задачи (27), (28) представляется в виде полинома третьей степени

$$
\begin{align*}
& x_{21}(t)=0,6723334+0,711 t+0,499 t^{2}+0,818 t^{3}, \\
& x_{22}(t)=0,0020257+0,985 t+0,135 t^{2}-0,142 t^{3} . \tag{30}
\end{align*}
$$

Сравнивая значения точного решения $x^{0}(t)=\left(x_{1}^{0}(t), x_{2}^{0}(t)\right)=\left(e^{t}, t\right)$ краевой задачи (27), (28) в точках $t=0 ; 0,5 ; 1$ со значениями полученного решения (30), видно, что даже при невысоком порядке приближения ($m=2$) точность удовлетворительная. Для достижения большей точности вычислений следует увеличить число m.

1. Вайникко Г. М. О сходимости метода коллокации для нелинейных дифференциальных уравнепий // Журн. вычисл. математики и мат. физики. - 1966. -6, №1. - С. $35-42$.
2. Самойленко А. М., Ронто Н. И. Численно-аналитические методы исследования решений краевых задач. - Киев: Наук. думка, 1985. - 224 с.
3. Суетин П. К. Классические ортогональные многочлены. - М.: Наука, 1979. - 416 с.
4. Натансон И. П. Конструктивная теория функций. -М.; Л.: Гостехтеоретиздат, 1949.-686 с.
5. Канторович Л. В., Акилов Г. П. Функциональный анализ в нормированных пространствах. М.; Л.: Физматгиз, 1959. - 632 с.
j. Красносельский М. А. Топологические методы в теории нелинейных интегральных уравнений. - М.: Гостехиздат, 1956. - 392 с.
