В. В. Строк, канд. физ.-мат. наук (Ин-т математики АН Украины, Киев)

ЦИРКУЛЯНТНЫЕ МАТРИЦЫ И СПЕКТРЫ ГРАФОВ ДЕ БРЕЙНА

Изучается блочное строение k-циркулянтных матриц A порядка n ($k \ge 2, k \mid n$) и доказаны утверждения, позволяющие ряд задач с матрицами $A + A^T$ сводить к аналогичным задачам с матрицами меньшего порядка — блоками матриц A и A^T . Получен спектр и число остовных деревьев неориентированного графа де Брейна.

Вивчається блочна структура k-циркулянтних матриць A порядку n ($k \ge 2$, kl n) та доведено твердження, що дозволяють ряд задач з матрицями $A + A^T$ зводити до аналогічних задач з матрицями меншого порядку — блоками матриць A і A^T . Одержано спектр та число фактордерев неорієнтованого графа де Брьойна.

- 1. Введение. В данной статье исследуются особенности блочного строения k-циркулянтных матриц и свойства их блоков с целью нахождения собственных значений разреженных матриц с фиксированным расположением нулевых элементов, в частности, матриц смежности графов комбинаторных последовательностей. Полученные результаты позволили вычислить спектр и установить число остовных деревьев неориентированных графов де Брейна и могут быть использованы для анализа теоретико-графовых моделей, связанных с разработкой эффективных алгоритмов. Наиболее полно результаты о циркулянтных матрицах (k-циркулянтах) изложены в работах [1, 2].
- браические свойства вещественных k-циркулянтных матриц (k-циркулянтов) матриц, у которых каждая строка (кроме первой) получается из предыдущей в результате циклического сдвига на k столбцов. Орграфом де Брейна $\overrightarrow{G}_{k,n}$ = = (V, \overrightarrow{E}) [3] на $|V| = k^n$ вершинах называется помеченный орграф, у которого

2. Основные определения и обозначения. В статье используются алге-

каждая вершина представлена n-кой над алфавитом $\{0,1,2,\ldots,k-1\}$ и дуга $\overrightarrow{v_iv_j}\in \overrightarrow{E}$ направлена из вершины $v_i=(b_1,\ldots,b_n)$ в вершину $v_j=(c_1,\ldots,c_n)$ тогда и только тогда, когда $b_{i+1}=c_i,\,i=\overline{1,\,n-1}$.

вектор—строка которой $(a_1,a_2,\ldots,a_k,0,\ldots,0)=(1,1,\ldots,1,0,\ldots,0)$. Связь между элементами a_{ij} i-й строки и элементами предыдущей строки такова: $a_{ij}=a_{i-1,j-k} \pmod{k^n}$. Легко установить, что матрица A является матрицей \to

Пусть $A = [a_{ii}]$ — k-циркулянтная (0, 1)-матрица порядка $k^n, k > 1$, первая

смежности орграфа $\overrightarrow{G}_{k,n}$ (см., например, [4]). Матрицу $A = A(\overrightarrow{G}_{k,n})$ представим в следующем, удобном для дальнейших преобразований, виде:

$$A(\vec{G}_{k,n}) = (D_1, D_2, \dots, D_k)^T, D_i = D, i = \overline{1, k},$$
 (1)

где

$$D = \sum_{q=1}^{m} e_q = \operatorname{diag}(e_1, e_2, \dots, e_m)$$

— $(k^{n-1} \times k^n)$ -матрица, являющаяся прямой суммой вектор-строк $e_q = (b_1, \ldots, b_k) = (1, \ldots, 1), m = k^{n-1}$.

© B. B. CTPOK, 1992

Неориентированным графом де Брейна $G_{k,n}$ порядка k^n называется граф,

матрица смежности которого $A(G_{k,n}) = A + A^T$, где $A = A(\overrightarrow{G}_{k,n})$.

В дальнейшем будем пользоваться следующими обозначениями для операций над матрицами: $A \otimes B$ и $A \stackrel{\bullet}{+} B$ – соответственно прямое произведение и прямая сумма матриц; $I_{(i)+c(j)}(I^{(i)+c(j)})$ — прибавление j-й строки (столбца), умноженной на c, к i-й строке (столбцу). Множество всех матриц порядка r обозначается через M_r . Матрицы $A, B \in M_r$ называются эквивалентными ($A \sim$

Используемые обозначения и определения можно найти, например, в [5]. **3. Блочное строение** k-циркулянтов и эквивалентность. Представим произвольный k-циркулянт A порядка n ($k \ge 2$, $k \mid n$) в блочном виде $A = (D_1, \ldots, D_k)$, где $D_i = D = (A_1, \ldots, A_k)$, $A_j \in M_{n/k}$, $i, j = \overline{1, k}$. Тогда матрица $\mathcal{A} = A + A^T$ примет блочную форму

~ B), если существуют такие невырожденные матрицы $P, Q ∈ M_r$, что B = PAQ.

$$\mathcal{A} = \begin{bmatrix} A_1 + A_1^T & A_2 + A_1^T & \dots & A_k + A_1^T \\ A_1 + A_2^T & A_2 + A_2^T & \dots & A_k + A_2^T \\ \dots & \dots & \dots & \dots \\ A_1 + A_k^T & A_2 + A_k^T & \dots & A_k + A_k^T \end{bmatrix}.$$
 (2)

Ряд свойств циркулянтов описывает следующая теорема.

Теорема 1. Пусть произвольный k-циркулянт A порядка n ($k \ge 2, k \mid n$) c первой вектор-строкой (a_1, \ldots, a_n) разбит на блоки $A_{ij} = A_j$ порядка $n \mid k$, $1 \le i \le k$, $1 \le j \le k$. Тогда справедливы следующие утверждения.

 1^0 Л юбой блок $C_{r,\ v}$ матрицы $\mathfrak{B}=AA^T, 1\leq r\leq k$, $1\leq v\leq k$, является симметричной матрицей $\mathfrak{T}=\sum A_jA_j^T=[c_{l,\ m}]$ порядка $n\ /\ k$, у которой $(l,\ m)$ -элемент задается формулой

$$c_{l,m} = \sum_{s=1}^{n} a_{n-(l-1)k+s} a_{n-(m-1)k+s}$$
.

 2^0 Матрица $\hat{A} = \sum A_j$ является q-циркулянтом порядка $n \mid k$ с первой вектор-строкой $(b_1, \ldots, b_{n/k})$, где $q \equiv k \pmod{n \mid k}$, $b_i = \sum_{s=0}^{k-1} a_{i+sn/k}$, $i = \overline{1, n/k}$ (индексы приведены к наименьшим положительным остаткам по mod n).

Доказательство. Блочная форма (2) матрицы A такова, что для получения формул, определяющих элементы матриц $\mathfrak C$ и $\hat A$, достаточно выполнить указанные произведение и суммирование соответствующих блоков. Из характера суммирования блоков A_j (построчное суммирование элементов циркулянта A с шагом n/k) усматривается, что $\hat A$ является некоторым q-циркулянтом. Для определения q рассмотрим первые вектор-строки (a_1, \ldots, a_n) и $(b_1, \ldots, b_{n/k})$ матриц A и $\hat A$, соответственно. В предположении,

что $\hat{A} = q$ -циркулянт, для элемента $b_{2,\,q+1}$ второй вектор-строки матрицы \hat{A} справедливо равенство $b_{2,\,q+1} = b_1$. Заметим, что элемент $a_1 \in (a_1,\,\dots,\,a_n)$ является слагаемым как в $b_1 \in (b_1,\,\dots,\,b_{n/k})$, так и в $b_{2,\,q+1}$. Поскольку A—

второй строке блока A_r , $r = \frac{1}{k(k+1)} / n[$, будет занимать в нем позицию $(2, j^*)$,

k-циркулянт, то $a_1 = a_{2,k+1}$. С другой стороны, элемент $a_{2,k+1}$, находясь во

 $j^* \equiv (k+1) \pmod{n/k}$, являясь также слагаемым для элемента $b_{2, a+1}$, т.е.

 $b_{2, q+1} = b_{2, i}$ и, следовательно, $q \equiv k \pmod{n/k}$, что и требовалось доказать.

Введем теперь квадратную λ -матрицу порядка k $C(\alpha_0, \beta_0) = \beta_0 J + (\alpha_0 - \beta_0) = \beta_0 J + (\alpha_0 - \beta_0)$ $-\beta_0$)I, где α_0 и β_0 – многочлены от λ ($\alpha_0 \neq \beta_0$), I — единичная матрица, J —

матрица, все элементы которой равны 1. Попытаемся привести характеристическую матрицу для матрицы $\mathcal A$ к более простому виду. **Теорема 2.** Если A — k-циркулянт порядка n ($k \ge 2$, $k \mid n$) $u \mathcal{A} = A + A^T$

— матрица блочного порядка k с блоками порядка n/k, то матрица $\mathcal{A}(\alpha_0,\beta_0)=C(\alpha_0,\beta_0)\otimes I_{n\,/\,k}-\mathcal{A}\,$ эквивалентна матрице

 $B(\alpha_1, \beta_1) = \beta_1^{-1} k I_{k-1} \otimes I_{n/k} + [\alpha_1 I_{n/k} + \beta_1 (k^1 \mathfrak{B} - \mathfrak{C}) - \hat{\mathcal{A}}],$

где $\alpha_1 = \alpha_0 + (k-1)\beta_0$, $\beta_1 = k / (\alpha_0 - \beta_0)$, $\hat{A} = \sum_{i=1}^k A_i + \sum_{j=1}^k A_j^T$,

$$\mathfrak{T} = \sum_{j=1}^k A_j A_j^T$$
, $\mathfrak{B} = \sum_{j=1}^k A_j \sum_{j=1}^l A_j^T$. Доказательство. Рассмотрим следующие наборы элементарных

преобразований матриц блочного порядка k с блоками порядка n/k:

a)
$$\{I_{(i)-(k)}\}, i = \overline{1,k-1};$$
 b) $\{I^{(i)-(k)}\}, i = \overline{1,k-1};$
c) $\{I^{(i)-(1)}\}, i = \overline{2,k-1};$ d) $\{I^{(1)-(i)}\}, i = \overline{2,k-1};$
e) $\{I^{(i)+(1)/k}\}, i = \overline{2,k};$ f) $\{I^{(k)+(i)}\}, i = \overline{2,k-1};$

g)
$$\{I_{(k)+(i)/k}\}, i = \overline{1,k-1}; h\}$$
 $\{I^{(k)-(i)^*}\}, i = \overline{1,k-1},$

где $(i)^* = ((i) / (\alpha_0 - \beta_0)(\delta_{1i}(k-1) + 1))(A_k^T - A_i^T)$, а δ_{1i} — символ Кронекера. Легко видеть, что с этими преобразованиями совпадают операции, получаемые

с помощью соответствующих левых блочно элементарных матриц

$$E_{a} = \begin{bmatrix} I & & & -I \\ & & 0 & \\ & \ddots & \dots \\ 0 & I & -I \\ O & \dots & O & I \end{bmatrix}, E_{g} = \begin{bmatrix} I & & & O \\ & & 0 & \\ & \ddots & \dots \\ 0 & I & O \\ k^{-1}I & \dots & k^{-1}I & I \end{bmatrix}$$

и правых блочно элементарных матриц

$$E_b = \begin{bmatrix} I & & & & O \\ & & & 0 & \\ & & \ddots & & \dots \\ 0 & I & O \\ -I & \dots & -I & I \end{bmatrix}, \quad E_c = \begin{bmatrix} I & -I & \dots & -I & O \\ O & I & & 0 & \\ \dots & & \ddots & \\ O & & & I \end{bmatrix},$$

$$E_d = \begin{bmatrix} I & O & \dots & O \\ -I & I & & 0 & \\ \dots & & \ddots & \\ -I & 0 & & & \\ \end{bmatrix}, \quad E_e = \begin{bmatrix} I & k^{-1}I & \dots & k^{-1}I \\ O & I & & 0 & \\ \dots & & \ddots & \\ 0 & & & & \\ \end{bmatrix},$$

$$E_f = \begin{bmatrix} I & & O \\ & & 0 & I \\ & \ddots & & \dots \\ 0 & & I & I \\ O & & \dots & O & I \end{bmatrix}, E_h = \begin{bmatrix} I & & -(\gamma k)^{-1}(A_k^T - A_1^T) \\ I & 0 & -\gamma^{-1}(A_k^T - A_2^T) \\ & \ddots & & \dots \\ 0 & & I & -\gamma^{-1}(A_k^T - A_{k-1}^T) \\ O & & \dots & O & I \end{bmatrix},$$

где $\gamma = \alpha_0 - \beta_0$. Реализуя указанные преобразования, найдем матрицу $P\mathcal{A}Q$, где $P = E_g E_a$, $Q = E_b E_c E_d E_e E_f E_h$. Как несложно вычислить,

$$P = \begin{bmatrix} I & & -I \\ & & 0 \\ & \ddots & \dots \\ 0 & I & -I \\ k^{-1}I & \dots & k^{-1}I \end{bmatrix},$$

$$kQ = \begin{bmatrix} k(k-1)I & -I & -I & \cdots & -I & \gamma^{-1}(kA_1^T - A^T(\gamma)) \\ -kI & (k-1)I & -I & \cdots & -I & \gamma^{-1}(kA_2^T - A^T(\gamma)) \\ -kI & (k-1)I & -I & \cdots & -I & \gamma^{-1}(kA_2^T - A^T(\gamma)) \\ -kI & -I & (k-1)I & \cdots & -I & \gamma^{-1}(kA_3^T - A^T(\gamma)) \\ -kI & -I & -I & \cdots & (k-1)I & \gamma^{-1}(kA_{k-1}^T - A^T(\gamma)) \\ -kI & -I & -I & \cdots & -I & \gamma^{-1}(kA_k^T - A^T(\gamma)) \end{bmatrix},$$

где $A^{T}(\gamma) = \hat{A}^{T} - \gamma I$, $\hat{A}^{T} = \sum_{i=1}^{k} A_{j}^{T}$, $\hat{A}^{T} \in M_{n/k}$

Тогда

$$PAQ = \begin{bmatrix} H_1 & H_1 & \dots & H_1 \\ H_2 & H_2 & \dots & H_2 \\ \dots & \dots & \dots & \dots & \dots \\ H_{k-1} & H_{k-1} & \dots & H_{k-1} \\ A_1 + k^{-1}\hat{A}^T & A_2 + k^{-1}\hat{A}^T & \dots & A_k + k^{-1}\hat{A}^T \end{bmatrix} Q = \begin{bmatrix} O & \mathcal{H} \\ W & H \end{bmatrix}, \quad (4)$$

 $+ k^{-1}(\hat{A} + \hat{A}^{T})$; при этом $\hat{A} = \sum_{i=1}^{k} A_j, H_i = A_i^T - A_k^T, i = \overline{1, k-1}, H \in M_{n/k}$ Далее, $P(C(\alpha_0, \beta_0) \otimes I_{n/k})Q =$

где $\mathcal{H} = (H_1, H_2, \dots, H_{k-1})^T$, $W = (kA_1 - \hat{A}, A_2 - k^{-1}\hat{A}, \dots, A_{k-1} - k^{-1}\hat{A})$, $O \in M_{n-n/k}$, $\mathcal{H} \in M_{(n-n/k)\times(n/k)}$, $W \in M_{(n/k)\times(n-n/k)}$, a $H = \mathcal{T}\left(\sum A_j A_j^T - k^{-1}\hat{A}\hat{A}^T\right) + 1$

$$= \begin{vmatrix} \gamma I & & & -\gamma I \\ & & 0 & \\ & \ddots & & \dots \\ 0 & & \gamma I & -\gamma I \\ F & & F & F \end{vmatrix} Q = \begin{vmatrix} k\gamma I & & & H_1 \\ & \gamma I & & 0 & H_2 \\ & & \ddots & & \dots \\ 0 & & \gamma I & H_{k-1} \\ & & & & F \\ & & & & & F \end{vmatrix},$$

где $F = k^{-1}(\alpha_0 + (k-1)\beta_0)I$, $F \in M_{n/k}$. Объединяя (4) и (5), получаем матрицу

$$B(\lambda) = P\{C(\alpha_0, \beta_0) \otimes I_{n/k} - \mathcal{A}\}Q = \begin{bmatrix} \gamma I & 0 & O \\ & \ddots & & \dots \\ 0 & \gamma I \\ & -W & \hat{H} \end{bmatrix}$$
 (6) где $\hat{H} = F - H$, $H \in M_{n/k}$. После сокращения общих множителей $(k$ и k^{-1} соответственно в верхней и нижней блочных строках) и исключения ненулевых элементов в нижней левой блочной строке матрица (6) приобретает вид

$$B(\alpha_1,\,\beta_1) \,=\, (\alpha_0 - \beta_0) I \, \stackrel{\bullet}{+} \, L,\, \text{где}$$

$$L \,=\, (\alpha_0 + (k\,-1)\beta_0) I_2 \,+\, \gamma^{-1} (\hat{A}\,\hat{A}^T - k \sum_{j=1}^k A_j A_j^T) - \hat{\mathcal{A}}, \tag{7}$$
 при этом $\hat{\mathcal{A}} \,\, \doteq \,\, \hat{A} \,+\, \hat{A}^T,\, I_1 \in M_{(k-1)n/k},\, I_2,\, A_j,\, \hat{A} \in M_{n/k}.$ Путем несложных

видоизменений выражения (7) получаем утверждение теоремы 2. Матрицы \hat{A} , В и С вычисляются по формулам теоремы 1.

Следствие 1. В случае матрицы смежности графа де Брейна $\mathcal{A} = \mathcal{A}(G_{k,n})$ порядка k^n матрица $\mathcal{A}(\alpha_0, \beta_0)$ эквивалентна матрице

порядка
$$k^n$$
 матрица $\mathcal{A}(lpha_0,eta_0)$ эквивалентна матри

 $B(\alpha_1, \beta_1) = \gamma I + \mathcal{A}(\alpha_1, \beta_1),$

оряока к матрица
$$\mathcal{A}(\alpha_0, \, \beta_0)$$
 эквивалентна матри $B(\alpha_1, \, \beta_1) = \gamma I \stackrel{\bullet}{+} \mathcal{A}(\alpha_1, \, \beta_1),$

 $z\partial e \ \mathcal{A}(\alpha_1,\,\beta_1) = C(\alpha_1,\,\beta_1) \otimes \ I_{k^{n-2}} - \mathcal{A}(G_{k,\,n-1}), \ \gamma \ = \ \alpha_0 - \beta_0, \ \alpha_1 = \alpha_0 - (k-1)$

 $(-1)(\beta_1 - \beta_0), \beta_1 = k\gamma^{-1}, I \in M_{(k-1)k^{n-1}}.$

Доказательство. Пусть $\mathcal{A}(G_{k,n})$ — матрица смежности графа $G_{k,n}$

порядка k^n . Блоки $A_i \in M_{k^{n-1}}$, входящие в блочную вектор-строку $D = (A_1, \dots$

..., A_k) матрицы $A(\vec{G}_{k,n})$, представим в блочной форме $A_i = (D_1^{(i)}, ..., D_k^{(i)})^T$. Здесь блок $D_i^{(i)} = D = \sum_{q=1}^m e_q \neq O, m = k^{n-2}$ (см. (1)), а остальные блоки —

(5)

 $P_{\mathcal{A}}(\lambda) = (\alpha_0 + (k-1)\beta_0 - 2k) \prod_{i=0}^{n-1} (\alpha_i - \beta_i)^{(k-1)k^{n-1-i}}$ (8)

ставим в виде

нулевые матрицы. Поэтому матрица $\hat{A} = \sum_{i=1}^k A_i = (D_1^{(1)}, \dots, D_k^{(k)})^T =$

 $=(D,...,D)^T=A(\vec{G}_{k,n-1}), D \in M_{k^{n-2} \times k^{n-1}};$ следовательно, $\mathcal{A} = \hat{A} + \hat{A}^T = \hat{A}$ $=\mathcal{A}(G_{k,n-1})$ является матрицей смежности графа де Брейна порядка k^{n-1} . Нетрудно убедиться, что теперь матрица $\mathfrak{C} = k I_2$ (см. теорему 2), а $\mathfrak{B} =$ $=\hat{A}\,\hat{A}^T=kJ\otimes I_3\ (J\in M_k,I_2\in M_{k^{n-1}},I_3\in M_{k^{n-2}}).$ Подставляя полученные

 $L = ((\alpha_1 - \beta_1)I + \beta_1 J) \otimes I_3 - \mathcal{A}(G_{k,n-1}),$

где $\alpha_1 = \alpha_0 + (k-1)\beta_0 - k(k-1)(\alpha_0 - \beta_0)^{-1} = \alpha_0 - (k-1)(\beta_1 - \beta_0), \ \beta_1 = k(\alpha_0 - \beta_0)^{-1}$ $(\alpha_1 - \beta_0)^{-1}$, $I, J \in M_k$. Легко видеть, что $(\alpha_1 - \beta_1)I + \beta_1 J = C(\alpha_1, \beta_1)$, и

4. Спектры графов де Брейна. Прежде, чем перейти к нахождению собственных значений матрицы смежности графа $G_{k,n}$, докажем ряд вспомогатель-

Лемма 1. В условиях следствия 1 многочлен $P_{\mathcal{A}}(\lambda) = \det \mathcal{A}(\alpha_0, \beta_0)$ пред-

следовательно, $\mathcal{A}(\alpha_0, \beta_0) \sim B(\alpha_1, \beta_1)$, что и требовалось доказать.

выражения в (7), имеем

ных утверждений.

 $i\partial e \ \alpha_i = \alpha_{i-1} - (k-1)(\beta_i - \beta_{i-1}), \ \beta_i = k/(\alpha_{i-1} - \beta_{i-1}), \ i = \overline{1, n-1}.$

Доказательство. Если $\mathcal{A} = \mathcal{A}(G_{k,n})$, то в результате последовательного применения теоремы 2 к матрицам $\mathcal{A}(\alpha_0, \beta_0), \mathcal{A}(\alpha_1, \beta_1), \dots, \mathcal{A}(\alpha_{n-2}, \beta_{n-2})$ на (n-1)-м шаге матрица $\mathcal{A}(\alpha_0, \beta_0)$ будет иметь вид

$$B(\alpha_{n-1}, \beta_{n-1}) = \sum_{j=0}^{n-2} (\alpha_j - \beta_j) I_j + \mathcal{A}(\alpha_{n-1}, \beta_{n-1}),$$

где I_j — единичная матрица порядка $(k-1)k^{n-1-j}$, а $\mathcal{A}(\alpha_{n-1},\ \beta_{n-1})=$

 $= C(\alpha_{n-1}, \beta_{n-1}) - \mathcal{A}(G_{k,1})$. Τακ κακ $\mathcal{A}(G_{k,1}) = 2J, J \in M_k$, το det $\mathcal{A}(\alpha_{n-1}, \beta_{n-1}) = 0$ $=\alpha_{n-1}+(k-1)\beta_{n-1}-2k$. Ho tak kak $\alpha_{n-1}+(k-1)\beta_{n-1}=\alpha_{n-2}+(k-1)\beta_{n-2}=\ldots=$ $= \alpha_0 + (k-1)\beta_0$, что усматривается из рекуррентных соотношений для α_i и β_i то отсюда получаем (8).

Легко видеть, что каждой разности $\gamma_i = \alpha_i - \beta_i$, $i = \overline{1, n-1}$, соответствует непрерывная дробь [6] $b_0 + K_{j=1}^i(a_j/b_j)$, где $b_0 = b_i = \alpha_0 + (k-1)\beta_0$ $(j=\overline{1,i-1})$, $b_i = \alpha_0 - \beta_0, \, a_i = -k^2, \, j = \overline{1,i}$. Поэтому в дальнейшем понадобится следующее утверждение.

Лемма 2. Если S_n , R_n и f_n — соответственно пе числитель, знаменатель и подходящая дробь непрерывной дроби $b_0 + K(a_i / b_i)$, где $a_i = -a$, $a \in N$, $b_0 = b_i = \lambda$ — действительная переменная, то $S_n = S_n(\lambda, a)$ и $R_n = R_n(\lambda, a)$ являются многочленами по λ вида

$$S_n(\lambda, a) = R_{n+1}(\lambda, a) = a^{(n+1)/2} U_{n+1}(\lambda / 2\sqrt{a}) =$$

1576 ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 11 где $U_n(x)$ — многочлен Чебышева второго рода $(m = \lfloor (n+1)/2 \rfloor)$. Доказательство. В условиях леммы система разностных уравнений, из которой определяются S_n и R_n непрерывной дроби $\lambda + K(-a/\lambda)$, имеет

 $= \sum_{i=0}^{m} (-1)^{i} \binom{n+1-i}{i} a^{i} \lambda^{n+1-2i},$

 $f_n = f_n(\lambda, a) = \sqrt{a} U_{n+1}(\lambda 2 \sqrt{a}) / U_n(\lambda / 2 \sqrt{a}),$

 $S_n(\lambda, a) = \lambda S_{n-1}(\lambda, a) - aS_{n-2}(\lambda, a), n = 1, 2, 3, ...,$

$$R_n(\lambda, a) = \lambda R_{n-1}(\lambda, a) - aR_{n-2}(\lambda, a), n = 1, 2, 3, \dots,$$

a

с начальными условиями $S_0(\lambda, a) = \lambda, S_{-1}(\lambda, a) = 1, R_0(\lambda, a) = 1, R_{-1}(\lambda, a) = 0.$ Легко видеть, что $R_n(\lambda, a) = S_{n-1}(\lambda, a)$ и вычисление подходящей дроби $f_n(\lambda, a)$

связано с решением однородного разностного уравнения (11), общее решение которого имеет вид

$$S(\Omega, \alpha) = d^{-\alpha} + d^{-\alpha}$$
 (1)

 $S_n(\lambda, a) = d_1 x_1^n + d_2 x_2^n$ (12)

где
$$x_1, x_2$$
 — корни характеристического уравнения $x^2 - \lambda x + a = 0$ для раз-

ностного уравнения (11): $x_1 = \sqrt{a}(v + \sqrt{v^2 - 1}), x_2 = \sqrt{a}(v - \sqrt{v^2 - 1}), v = \lambda/2\sqrt{a}$,

при этом $v \neq \pm 1$, так как $x_1 \neq x_2$; d_1 и d_2 определяются из (12): $d_1 + d_2 = \lambda$,

$$d_1 x_1 + d_2 x_2 = \lambda^2 - a$$
. Находим $d_1 = \sqrt{a} (\mathbf{v} + \gamma)$, $d_2 = \sqrt{a} (\mathbf{v} - \gamma)$, где $\gamma = (2\mathbf{v}^2 - 1) \times (2\sqrt{\mathbf{v}^2 - 1})^{-1}$. Отсюда следует
$$S_n(\lambda, a) = a^{(n+1)/2} \left\{ (\mathbf{v} + \gamma) (\mathbf{v} + \sqrt{\mathbf{v}^2 - 1})^n + (\mathbf{v} - \gamma) (\mathbf{v} - \sqrt{\mathbf{v}^2 - 1})^n \right\} =$$

$$=a^{(n+1)/2}\frac{\left(\nu+\sqrt{\nu^2-1}\right)^{n+2}-\left(\nu-\sqrt{\nu^2-1}\right)^{n+2}}{2\sqrt{\nu^2-1}}=a^{(n+1)/2}U_{n+1}(\lambda/2\sqrt{a}),$$

где
$$U_{n+1}(v) = \sum_{j=1}^{k} A_j = (D_1^{(1)}, \dots, D_k^{(k)})^T = \sum_{j=0}^{m} (-1)^i \binom{n+1-i}{i} (2v)^{n+1-2i}$$

многочлен Чебышева второго рода [7]. Лемма доказана.

Заметим, что корни многочлена $S_n(\lambda, a)$ определяются выражением $\lambda_i =$

 $=2\sqrt{a}\cos i\pi/(n+1)$, $i=\overline{1,n}$, поскольку он тождественно совпадает с многочле-HOM $U_{n+1}(\lambda/2\sqrt{a})$.

Теорема 3. Характеристический многочлен неориентированного графа де

Брейна
$$G=G_{k,\;n}$$
 может быть факторизован в виде
$$P_G(\lambda)=k^{h}(\lambda-2k)\,U_n^{k-1}(\lambda/2k)\prod_{i=1}^{n-1}\{k^iU_i(\lambda/2k)\}^{(k-1)^2\,k^{n-1-i}}$$

где $U_i(x)$ — многочлены Чебышева второго рода, h = n(k-1).

Доказательство. Рассмотрим простейший случай матрицы С, когда

 $\alpha_0 = \lambda$, $\beta_0 = 0$. Тогда при $A = A(\vec{G}_{k,n})$ матрица $\mathcal{A}(\alpha_0, \beta_0) = \mathcal{A}(\lambda) = \lambda I - \mathcal{A}(G_{k,n})$

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 11

(13)

(9)

(10)

(11)

В данном случае $\alpha_i + (k-1)\beta_i = \alpha_{i-1} + (k-1)\beta_{i-1} = \dots = \alpha_0 + (k-1)\beta_0 = \lambda$ и разность $\alpha_i - \beta_i = \alpha_{i-1} + (k-1)\beta_{i-1} - k^2/(\alpha_{i-1} - \beta_{i-1})$ можно представить в виде i-й

и, следовательно, $P_{g}(\lambda) = P_{G}(\lambda)$ — характеристический многочлен графа $G_{k,n}$.

подходящей дроби $f_i(\lambda, a)$ непрерывной дроби $\lambda + K(-a/\lambda)$, где $a = k^2$. Тогда на основании леммы 2 находим $f_i(\lambda, k^2) = k U_{i+1}(\lambda/2k)/U_i(\lambda/2k)$. При подстановке полученных выражений в (8) получаем

$$P_G(\lambda) = (\lambda - 2k) \prod_{i=0}^{n-1} \{k U_{i+1}(\lambda/2k) / U_i(\lambda/2k)\}^{(k-1)k^{n-1-i}}$$

откуда следует (13). Из леммы 2 и тео

 $+h(k^{n}-1)/(k-1)$ вида

Из леммы 2 и теоремы 3 легко вывести следующее утверждение.

Следствие 2. Спектром графа $G_{k,n}$ является

$$\mathrm{Sp}G_{k,\,n} = egin{bmatrix} 2k, & \left\{2k\cosrac{i\pi}{n+1}
ight\}_{i=\overline{1,n}}, & \left\{2k\cosrac{i\pi}{j+1}
ight\}_{j=\overline{1,n-1}}^{i=\overline{1,j}} \\ 1, & k-1, & (k-1)^2k^{n-1-j} \end{bmatrix}.$$
 Теорема 4. Пусть $G_{k,\,n}$ — граф де Брейна и $t\left(G_{k,\,n}
ight)$ означает число ос-

Теорема 4. Пусть $G_{k,n}$ — граф де Бреина и $T(G_{k,n})$ означает число остовных деревьев, содержащихся в $G_{k,n}$. Тогда

$$t(G_{k,n}) = (n+1)^{k-1} \prod_{i=1}^{n-1} \{k^i(i+1)\}^{(k-1)^2 k^{n-1-i}} \dot{K}^{n(K-2)}.$$
 (14)

Доказательство. Для любого регулярного мультиграфа G степени r $t(G)=m^{-1}\prod_{i=2}^m(r-\lambda_i)=m^{-1}P_G'(r)$, где λ_i — собственные значения мультиграфа G, m — его порядок (известное утверждение Хученройтера [5]). Для графа $G_{k,n}$ r=2k, $m=k^n$. Тогда, используя теорему 3, имеем

$$P_G'(2k) = k^{-1}U_n^{k-1}(1)\prod_{i=1}^{n-1} \{k^i U_i(1)\}^{(k-1)^2 k^{n-1-i}},$$
(15)

где $U_i(1)$ — сумма коэффициентов многочлена Чебышева второго рода $U_i(x)$, $i = \overline{1,n}$. Подставляя (15) в приведенное выше выражение для t(G) и принимая во внимание тот факт, что $U_i(1) = i + 1$ (см., например, [7]), получаем выра-

i = 1, n. Подставляя (15) в приведенное выше выражение для t(G) и принимая во внимание тот факт, что $U_i(1) = i + 1$ (см., например, [7]), получаем выражение (14).

5. Приложения и замечания. В заключение укажем на возможность испо-

элемения и замечания. В заключение укажем на возможность использования найденного подхода для получения характеристических многочленов и спектров некоторых специальных классов графов. Пусть $\hat{T}_{k,n}$ — корневое дерево высоты n с q петлями у корня, при этом корневая вершина имеет степень h (без учета петель) и все h вершин, смежных с корневой, являются корнями полных k-нарных деревьев высоты n-1. Нетрудно убедиться, что матрицей смежности дерева $\hat{T}_{k,n}$ является квадратная матрица порядка 1 +

$$\mathcal{A}(\hat{T}_{k,n}) = \begin{bmatrix} \mathcal{A}(\hat{T}_{k,n-1}) & O_2 \\ O_2^T & D^T & O_1 \end{bmatrix},$$

ставим в блочно диагональном виде матрицу $\lambda I = \lambda + \sum_{i=0}^{n-1} \lambda I_{hk^i}$, что соответствует блочному разбиению матрицы $\mathcal{A}(\hat{T}_{k,n})$. В результате последовательного исключения элементов (ненулевых) в подматрицах $D^{(i)}$ матриц λI – $-\mathcal{A}(\hat{T}_{k,n-i}), i=\overline{0,n-1} \ (D^{(0)}=D),$ получаем, что

где $D = (hk^{n-2} \times hk^{n-1})$ -матрица вида (1); O_1 и O_2 — нулевые матрицы с размерами соответственно $hk^{n-2} \times hk^{n-1}$ и $(1 + h(k^{n-2} - 1)/(k - 1)) \times hk^{n-1}$. Пред-

$$\{\lambda I - \mathcal{A}(\hat{T}_{k,n})\} \sim \{(\lambda - 2g - hf_{n-1}^{-1}(\lambda, k)) + \sum_{i=0}^{n-1} f_{n-1-i}(\lambda, k)I_{hk^i}\},$$

где $f_{n-1-i}(\lambda, k) = \lambda + \sum_{j=1}^{n-1-i} (-a_j/\lambda), a_j = k, f_0 = \lambda$. Тогда на основании леммы 2 характеристический многочлен дерева может быть факторизован в виде

$$P_{\hat{T}}(\lambda) = k^{(n-1)/2} h\{h^{-1} \sqrt{k} (\lambda - 2g) U_n(\lambda / 2\sqrt{k}) - U_{n-1}(\lambda / 2\sqrt{k})\} \times \left\{ k^{n/2} U_n(\lambda / 2\sqrt{k}) \right\}^{h-1} \left[\prod_{i=1}^{n-1} \{k^{i/2} U_i(\lambda / 2\sqrt{k})\}^{h-1} \right]^{h(k-1)},$$
(16)

где
$$U_i(x)$$
 — многочлены Чебышева второго рода, $q = \kappa^{n-1-i}$.

При g = 0, h = k из (16) получаем соотношение для характеристического многочлена полного высоты n k-нарного дерева

 $P_T(\lambda) = k^{(n+1)/2} U_{n+1}(\lambda / 2\sqrt{k}) \prod^n \{k^{i/2} U_i(\lambda / 2\sqrt{k})\}^{(k-1)k^{n-i}},$

откуда следует полученный ранее в [8, 9] его спектр. При
$$g=0$$
, $h=k=1$ из (16) следует известное [5] выражение для характеристического многочлена простой цепи порядка $n+1$. В случае $g=1$, $h=k-1$ из (16) получаем соотношение для характеристического многочлена остовных деревьев с петлей у кор-

ня графа де Брейна [10]. Указанные деревья обладают тем замечательным свойством, что их прямая сумма по ребрам является представлением графа $G_{k,n}$ [10]. Спектр графа де Брейна $G_{2,n}$ получен ранее в работе [11].

1. Воеводин В. В., Тыртышников Е. Е. Вычислительные процессы с теплицевыми матрицами. -М.: Наука, 1987.- 320 с. 2. Ablow C.M., Brenner J.L. Roots and canonical forms for circulant matrices // Trans. Amer. Math.

Soc. - 1963. - 107, N 2. - P. 360-376.

3. Де Брейн Н. Г. Одна комбинаторная задача // Киберн. сб. - 1969.-Вып. 6.- С.33-40. 4. Кратко М. И., Строк В. В. Последовательности де Брейна с ограничениями // Вопросы кибернетики. Комбинаторный анализ и теория графов.-М.: Наука, 1980.-С.80-84.

5. Цветкович Д., Дуб М., Захс Х. Спектры графов. Теория и применение. – Киев: Наук. думка,

1984.-384 c. Джоунс У., Трон В. Непрерывные дроби.— М.: Мир, 1985.—416 с. 7. Риордан Дж. Комбинаторные тождества.- М.: Мир, 1982.-256 с.

8. Gutman I. Characteristic and matching polynomials of some compound graphs // Publ. Inst. Math.-

1980.- 27.- P. 61-66. 9. Raut G. Spectrul arborilor k-ary completi // Studii si cercetari matematice.- 1983.- 35, N 3.- P. 183-188.

10. Хоменко Н. П., Строк В. В. -Т-факторизация ВВ-графов // Теория графов.- Киев: Ин-т математики АН УССР, 1977.-С.135-142. 11. Strok V., Yaworski E. Spectrum of the binary de Bruijn graph // XVII Yugoslav. Symp. Oper. Res. (Dubrovnik-Kupari; 9-12.10.1990).— Beograd: Naučna Knjiga, 1990.— P. 165–168.

Получено 13.12.91