ЦИРКУЛЯНТНЫЕ МАТРИЦЫ И СПЕКТРЫ ГРАФОВ ДЕ БРЕЙНА

Изучается блочное строение k-циркулянтных матриц A порядка $n(k \geq 2, k \mid n$) и доказаны утверждения, позволяющие ряд задач с матрицами $A+A^{T}$ сводить к аналогичным задачам с матрицами меньшего порядка - блоками матриц A и A^{T}. Получен спектр и число остовных деревьев неориентированного графа де Брейна.
Вивчається блочна структура k-циркулянтних матриць A порядку $n(k \geq 2, k 1 n)$ та доведено твердження, що дозволяють ряд задач з матрицями $A+A^{T}$ зводити до аналогічних задач з матрицями меншого порядку - блоками матриць A і A^{T}. Одержано спектр та число фактордерев неорієнтованого графа де Брьойна.

1. Введение. В данной статье исследуются особенности блочного строения k-циркулянтных матриц и свойства их блоков с целью нахождения собственных значений разреженных матриц с фиксированным расположением нулевых элементов, в частности, матриц смежности графов комбинаторных последовательностей. Полученные результаты позволили вычислить спектр и установить число остовных деревьев неориентированных графов де Брейна и могут быть использованы для анализа теоретико-графовых моделей, связанных с разработкой эффективных алгоритмов. Наиболее полно результаты о циркулянтных матрицах (k-циркулянтах) изложены в работах [1, 2].
2. Основные определения и обозначения. В статье используются алгебраические свойства вещественных k-циркулянтных матриц (k-циркулянтов) - матриц, у которых каждая строка (кроме первой) получается из предыдущей в результате циклического сдвига на k столбцов. Орграфом де Брейна $\vec{G}_{k, n}=$ $=(V, \vec{E})[3]$ на $|V|=k^{n}$ вершинах называется помеченный орграф, у которого каждая вершина представлена n-кой над алфавитом $\{0,1,2, \ldots, k-1\}$ и дуга $\vec{v}_{i} v_{j} \in \vec{E}$ направлена из вершины $v_{i}=\left(b_{1}, \ldots, b_{n}\right)$ в вершину $v_{j}=\left(c_{1}, \ldots, c_{n}\right)$ тогда и только тогда, когда $b_{i+1}=c_{i}, i=\overline{1, n-1}$.

Пусть $A=\left[a_{i j}\right]-k$-циркулянтная (0,1)-матрица порядка $\cdot k^{n}, k>1$, первая вектор-строка которой $\left(a_{1}, a_{2}, \ldots, a_{k}, 0, \ldots, 0\right)=(1,1, \ldots, 1,0, \ldots, 0)$. Связь между элементами $a_{i j} i$-й строки и элементами предыдущей строки такова: $a_{i j}=a_{i-1, j-k}\left(\bmod k^{n}\right)$. Легко установить, что матрица A является матрицей смежности орграфа $\vec{G}_{k, n}$ (см., например, [4]). Матрицу $A=A\left(\vec{G}_{k, n}\right)$ представим в следующем, удобном для дальнейших преобразований, виде:

$$
\begin{equation*}
A\left(\vec{G}_{k, n}\right)=\left(D_{1}, D_{2}, \ldots, D_{k}\right)^{T}, D_{i}=D, i=\overline{1, k} \tag{1}
\end{equation*}
$$

где

$$
D=\sum_{q=1}^{m} e_{q}=\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{m}\right)
$$

- $\left(k^{n-1} \times k^{n}\right)$ матрица, являющаяся прямой суммой вектор-строк $e_{q}=$ $=\left(b_{1}, \ldots, b_{k}\right)=(1, \ldots, 1), m=k^{n-1}$.

Неориентированным графом де Брейна $G_{k, n}$ порядка k^{n} называется граф, матрица смежности которого $A\left(G_{k, n}\right)=A+A^{T}$, где $A=A\left(\vec{G}_{k, n}\right)$.

В дальнейшем будем пользоваться следующими обозначениями для операций над матрицами: $A \otimes B$ и $A \dot{+} B$ - соответственно прямое произведение и прямая сумма матриц; $I_{(i)+c(j)}\left(I^{(i)+c(j)}\right)$ - прибавление j-й строки (столбца), умноженной на c, к i-й строке (столбцу). Множество всех матриц порядка r обозначается через M_{r}. Матрицы $A, B \in M_{r}$ называются эквивалентными ($A \sim$ $\sim B$), если существуют такие невырожденные матрицы $P, Q \in M_{r}$, что $B=P A Q$. Используемые обозначения и определения можно найти, например, в [5].
3. Блочное строение \boldsymbol{k}-циркулянтов и эквивалентность. Представим произвольный k-циркулянт A порядка $n(k \geq 2, k \mid n)$ в блочном виде $A=$ $=\left(D_{1}, \ldots, D_{k}\right)$, где $D_{i}=D=\left(A_{1}, \ldots, A_{k}\right), A_{j} \in M_{n / k}, i, j=\overline{1, k}$. Тогда матрица $\mathcal{A}=$ $=A+A^{T}$ примет блочную форму

$$
\mathcal{A}=\left[\begin{array}{cccc}
A_{1}+A_{1}^{T} & A_{2}+A_{1}^{T} & \ldots & A_{k}+A_{1}^{T} \tag{2}\\
A_{1}+A_{2}^{T} & A_{2}+A_{2}^{T} & \cdots & A_{k}+A_{2}^{T} \\
\cdots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots \\
A_{1}+A_{k}^{T} & A_{2}+A_{k}^{T} & \cdots & A_{k}+A_{k}^{T}
\end{array}\right] .
$$

Ряд свойств циркулянтов описывает следующая теорема.
Теорема 1. Пусть произвольный k-циркулянт А порядка n ($k \geq 2, k \mid n$) с первой вектор-строкой $\left(a_{1}, \ldots, a_{n}\right)$ разбит на блоки $A_{i j}=A_{j}$ порядка n / k, $1 \leq i \leq k, 1 \leq j \leq . k$. Тогда справедливы следующие утверждения.
1^{0} Л юбой блок $C_{r, v}$ матрицы 队 $=A A^{T}, 1 \leq r \leq k, 1 \leq v \leq k$, является симметричной матрицей $\wp=\sum A_{j} A_{j}^{T}=\left[c_{l, m}\right]$ порядка $n / k, y$ которой (l, m)-элемент задается формулой

$$
c_{l, m}=\sum_{s=1}^{n} a_{n-(l-1) k+s} a_{n-(m-1) k+s} .
$$

2^{0} Матрица $\hat{A}=\sum A_{j}$ является q-циркулянтом порядка n / k с первой вектор-строкой $\left(b_{1}, \ldots, b_{n / k}\right)$, где $q \equiv k(\bmod n / k), b_{i}=\sum_{s=0}^{k-1} a_{i+s n / k}, \quad i=\overline{1, n / k}$ (индексы приведены к наименьшим положительным остаткам по $\bmod n$).

Доказательство. Блочная форма (2) матрицы A такова, что для получения формул, определяющих элементы матриц ๕ и \hat{A}, достаточно выполнить указанные произведение и суммирование соответствующих блоков. Из характера суммирования блоков A_{j} (построчное суммирование элементов циркулянта A с шагом n / k) усматривается, что \hat{A} является некоторым q циркулянтом. Для определения q рассмотрим первые вектор-строки (a_{1}, \ldots \ldots, a_{n}) и ($b_{1}, \ldots, b_{n / k}$) матриц A и \hat{A}, соответственно. В предположении, что $\hat{A}-q$-циркулянт, для элемента $b_{2, q+1}$ второй вектор-строки матрицы \hat{A} справедливо равенство $b_{2, q+1}=b_{1}$. Заметим, что элемент $a_{1} \in\left(a_{1}, \ldots, a_{n}\right)$ является слагаемым как в $b_{1} \in\left(b_{1}, \ldots, b_{n / k}\right)$, так и в $b_{2, q+1}$. Поскольку $A-$
k-циркулянт, то $a_{1}=a_{2, k+1}$. С другони стороны, элемент $a_{2, k+1}$, находясь во второй строке блока $\left.A_{r}, r=\right] k(k+1) / n\left[\right.$, будет занимать в нем позицию $\left(2, j^{*}\right)$, $j^{*} \equiv(k+1)(\bmod n / k)$, являясь также слагаемым для элемента $b_{2, q+1}$, т.е. $b_{2, q+1}=b_{2, j}$ и, следовательно, $q \equiv k(\bmod n / k)$ что и требовалось доказать.

Введем теперь квадратную λ-матрицу порядка $k C\left(\alpha_{0}, \beta_{0}\right)=\beta_{0} J+\left(\alpha_{0}-\right.$ $\left.-\beta_{0}\right) I$, где α_{0} и β_{0} - многочлены от $\lambda\left(\alpha_{0} \neq \beta_{0}\right)$, I - единичная матрица, J матрица, все элементы которой равны 1. Попытаемся привести характеристическую матрицу для матрицы \mathcal{A} к более простому виду.

Теорема 2. Если $A-k$-циркулянт порядка $n(k \geq 2, k \mid n)$ и $\mathcal{A}=A+A^{T}$ - матрица блочного порядка k с блоками порядка n / k, то матрица $\mathcal{A}\left(\alpha_{0}, \beta_{0}\right)=C\left(\alpha_{0}, \beta_{0}\right) \otimes I_{n / k}-\mathcal{A}$ эквивалентна матрице

$$
B\left(\alpha_{1}, \beta_{1}\right)=\beta_{1}^{-1} k I_{k-1} \otimes I_{n / k} \dot{+}\left[\alpha_{1} I_{n / k}+\beta_{1}\left(k^{-1} \beta-\varkappa\right)-\hat{\mathcal{A}}\right],
$$

где

$$
\begin{gathered}
\alpha_{1}=\alpha_{0}+(k-1) \beta_{0}, \beta_{1}=k /\left(\alpha_{0}-\beta_{0}\right), \hat{\mathcal{A}}=\sum_{j=1}^{k} A_{j}+\sum_{j=1}^{k} A_{j}^{T}, \\
\bigodot=\sum_{j=1}^{k} A_{j} A_{j}^{T}, \beta=\sum_{j=1}^{k} A_{j} \sum_{j=1}^{l} A_{j}^{T} .
\end{gathered}
$$

Доказательство. Рассмотрим следующие наборы элементарных преобразований матриц блочного порядка k с блоками порядка n / k :
a) $\left\{I_{(i)-(k)}\right\}, i=\overline{1, k-1}$;
b) $\left\{I^{(i)-(k)}\right\}, i=\overline{1, k-1}$;
c) $\left\{I^{(i)-(1)}\right\}, i=\overline{2, k-1}$;
d) $\left\{I^{(1)-(i)}\right\}, i=\overline{2, k-1}$;
e) $\left\{I^{(i)+(1) / k}\right\}, i=\overline{2, k}$;
f) $\left\{I^{(k)+(i)}\right\}, i=\overline{2, k-1}$;
g) $\left.\left\{I_{(k)+(i) / k}\right\}, i=\overline{1, k-1} ; h\right)\left\{I^{(k)-(i)^{*}}\right\}, i=\overline{1, k-1}$,

где $(i)^{*}=\left((i) /\left(\alpha_{0}-\beta_{0}\right)\left(\delta_{1 i}(k-1)+1\right)\right)\left(A_{k}^{T}-A_{i}^{T}\right)$, а $\delta_{1 i}$ - символ Кронекера. Легко видеть, что с этими преобразованиями совпадают операции, получаемые с помощью соответствующих левых блочно элементарных матриц

$$
E_{a}=\left[\begin{array}{ccccc}
I & & & & -I \\
& & & 0 & \\
& & \ddots & & \ldots \\
& 0 & & I & -I \\
O & \cdots & & O & I
\end{array}\right], E_{g}=\left[\begin{array}{ccccc}
I & & & & O \\
& & & 0 & \\
& & \ddots & & \ldots \\
& 0 & & I & O \\
k^{-1} I & \cdots & & k^{-1} I & I
\end{array}\right]
$$

и правых блочно элементарных матриц

$$
\begin{aligned}
& E_{b}=\left[\begin{array}{ccccc}
I & & & & O \\
& & \ddots & 0 & \\
& & \ddots & & \ldots \\
-I & \ldots & & I & O \\
& -I & I
\end{array}\right], E_{c}=\left[\begin{array}{ccccc}
I & -I & \ldots & -I & O \\
O & I & & 0 & \\
\cdots & & \ddots & & \\
& 0 & & & \\
O & & & & I
\end{array}\right], \\
& E_{d}=\left[\begin{array}{cccc}
I & O & \cdots & \\
-I & I & & 0 \\
\cdots & & \ddots & \\
-I & 0 & & \\
O & & & \\
I
\end{array}\right], \quad E_{e}=\left[\begin{array}{ccccc}
I & k^{-1} I & \cdots & & k^{-1} I \\
O & I & & 0 & \\
\cdots & & \ddots & & \\
& 0 & & & \\
O & & & & I
\end{array}\right] \text {, } \\
& E_{f}=\left[\begin{array}{ccccc}
I & & & & O \\
& & \ddots & 0 & I \\
& 0 & & I & I \\
0 & \ldots & O & I
\end{array}\right], E_{h}=\left[\begin{array}{ccccc}
I & & & & -(\gamma k)^{-1}\left(A_{k}^{T}-A_{1}^{T}\right) \\
& I & & 0 & -\gamma^{-1}\left(A_{k}^{T}-A_{2}^{T}\right) \\
& & \ddots & & \ldots \ldots \ldots \ldots . \\
& 0 & & I & -\gamma^{-1}\left(A_{k}^{T}-A_{k-1}^{T}\right) \\
O & & \ldots & O & I
\end{array}\right],
\end{aligned}
$$

где $\gamma=\alpha_{0}-\beta_{0}$. Реализуя указанные преобразования, найдем матрицу $P \mathcal{A Q}$, где $P=E_{g} E_{a}, Q=E_{b} E_{c} E_{d} E_{e} E_{f} E_{h}$. Как несложно вычислить,

$$
\begin{aligned}
& P=\left[\begin{array}{ccccc}
I & & & -I \\
& & & 0 & \\
& & \ddots & & \ldots \\
& 0 & & I & -I \\
k^{-1} I & & \ldots & & k^{-1} I
\end{array}\right], \\
& k Q=\left[\begin{array}{cccccc}
k(k-1) I & -I & -I & \cdots & -I & \gamma^{-1}\left(k A_{1}^{T}-A^{T}(\gamma)\right) \\
-k I & (k-1) I & -I & \cdots & -I & \gamma^{-1}\left(k A_{2}^{T}-A^{T}(\gamma)\right) \\
-k I & -I & (k-1) I & \cdots & -I & \gamma^{-1}\left(k A_{3}^{T}-A^{T}(\gamma)\right) \\
\cdots \cdots \ldots \ldots . . & \cdots \cdots \ldots . . & \cdots \ldots \ldots \ldots & \cdots & \cdots \ldots \ldots \ldots & \cdots \cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
-k I & -I & -I & \cdots & (k-1) I & \gamma^{-1}\left(k A_{k-1}^{T}-A^{T}(\gamma)\right) \\
-k I . & -I & -I & \cdots & -I & \gamma^{-1}\left(k A_{k}^{T}-A^{T}(\gamma)\right)
\end{array}\right],
\end{aligned}
$$

$\operatorname{rдe} A^{T}(\gamma)=\hat{A}^{T}-\gamma I, \hat{A}^{T}=\sum_{j=1}^{k} A_{j}^{T}, \hat{A}^{T} \in M_{n / k}$
Тогда

$$
P \mathcal{A} Q=\left[\begin{array}{cccc}
H_{1} & H_{1} & \ldots & H_{1} \tag{4}\\
H_{2} & H_{2} & \ldots & H_{2} \\
\ldots \ldots \ldots \ldots . ~ & H_{k-1} & \ldots & H_{k-1} \\
H_{k-1} & H_{k-1} \\
A_{1}+k^{-1} \hat{A}^{T} & A_{2}+k^{-1} \hat{A}^{T} & \ldots & A_{k}+k^{-1} \hat{A}^{T}
\end{array}\right] Q=\left[\begin{array}{cc}
O & \mathcal{H} \\
W & H
\end{array}\right],
$$

где $\mathcal{H}=\left(H_{1}, H_{2}, \ldots, H_{k-1}\right)^{\mathcal{T}}, W=\left(k A_{1}-\hat{A}, A_{2}-k^{-1} \hat{A}, \ldots, A_{k-1}-k^{-1} \hat{A}\right)$, $O \in M_{n-n / k}, \mathcal{H} \in M_{(n-n / k) \times(n / k)}, W \in M_{(n / k) \times(n-n k)}, a H \xlongequal{\prime}\left(\sum A_{j} A_{j}^{T}-k^{-1} \hat{A} \hat{A}^{T}\right)+$ $+k^{-1}\left(\hat{A}+\hat{A}^{T}\right)$; при этом

$$
\hat{A}=\sum_{j=1}^{k} A_{j}, H_{i}=A_{i}^{T}-A_{k}^{T}, i=\overline{1, k-1}, H \in M_{n / k} .
$$

Далее,

\[

\]

где $F=k^{-1}\left(\alpha_{0}+(k-1) \beta_{0}\right) I, F \in M_{n / k}$. Объединяя (4) и (5), получаем матрицу

$$
B(\lambda)=P\left\{C\left(\alpha_{0}, \beta_{0}\right) \otimes I_{n / k}-\mathcal{A}\right\} Q=\left[\begin{array}{ccccc}
k \gamma I & & & & \tag{6}\\
& \gamma I & & 0 & O \\
& & \ddots & & \cdots \\
& 0 & & \gamma I & \\
& & -W & & \hat{H}
\end{array}\right]
$$

где $\hat{H}=F-H, H \in M_{n / k}$. После сокращения общих множителей (k и k^{-1} соответственно в верхней и нижней блочных строках) и исключения ненулевых элементов в нижней левой блочной строке матрица (6) приобретает вид $B\left(\alpha_{1}, \beta_{1}\right)=\left(\alpha_{0}-\beta_{0}\right) I+L$, где

$$
\begin{equation*}
L=\left(\alpha_{0}+(k-1) \beta_{0}\right) I_{2}+\gamma^{-1}\left(\hat{A} \hat{A}^{T}-k \sum_{j=1}^{k} A_{j} A_{j}^{T}\right)-\hat{\mathcal{A}}, \tag{7}
\end{equation*}
$$

при этом $\hat{\mathcal{A}}=\hat{A}+\hat{A}^{T}, I_{1} \in M_{(k-1) n / k}, I_{2}, A_{j}, \hat{A} \in M_{n / k}$. Путем несложных видоизменений выражения (7) получаем утверждение теоремы 2 . Матрицы \hat{A}, ß и 飞 вычисляются по формулам теоремы 1.

Следствие 1. В случае матрицы смежности графа де Брейна $\mathcal{A}=\mathcal{A}\left(G_{k, n}\right)$ порядка k^{n} матрица $\mathcal{F}\left(\alpha_{0}, \beta_{0}\right)$ эквивалентна матрице

$$
B\left(\alpha_{1}, \beta_{1}\right)=\gamma I \dot{+} \mathcal{A}\left(\alpha_{1}, \beta_{1}\right)
$$

где $\mathcal{A}\left(\alpha_{1}, \beta_{1}\right)=C\left(\alpha_{1}, \beta_{1}\right) \otimes I_{k^{n-2}}-\mathcal{A}\left(G_{k, n-1}\right), \gamma=\alpha_{0}-\beta_{0}, \alpha_{1}=\alpha_{0}-(k-$ $-1)\left(\beta_{1}-\beta_{0}\right), \beta_{1}=k \gamma^{-1}, I \in M_{(k-1) h^{n-1}}$.

Доказательство. Пусть $\mathcal{A}\left(G_{k, n}\right)$ - матрица смежности графа $G_{k, n}$ порядка k^{n}. Блоки $A_{i} \in M_{k^{n-1}}$, входящие в блочную вектор-строку $D=\left(A_{1}, \ldots\right.$
A_{k}) матрицы $A\left(\vec{G}_{k, n}\right)$, представим в блочной форме $A_{i}=\left(D_{1}^{(i)}, \ldots, D_{k}^{(i)}\right)^{T}$. Здесь блок $D_{i}^{(i)}=D=\dot{\sum}_{q=1}^{m} e_{q} \neq O, m=k^{n-2}$ (см. (1)), а остальные блоки -

нулевые матрицы. Поэтому матрица $\hat{A}=\sum_{j=1}^{k} A_{j}=\left(D_{1}^{(1)}, \ldots, D_{k}^{(k)}\right)^{T}=$ $=(D, \ldots, D)^{T}=A\left(\vec{G}_{k, n-1}\right), D \in M_{k^{n-2} \times k^{n-1}} ;$ следовательно, $\mathcal{A}=\hat{A}+\hat{A}^{T}=$ $=\mathcal{A}\left(G_{k, n-1}\right)$ является матрицей смежности графа де Брейна порядка k^{n-1}. Нетрудно убедиться, что теперь матрица $\mathbb{C}=k I_{2}$ (см. теорему 2), а $\not \Re_{3}=$ $=\hat{A} \hat{A}^{T}=k J \otimes I_{3}\left(J \in M_{k}, I_{2} \in M_{k^{n-1}}, I_{3} \in M_{k^{n-2}}\right)$. Подставляя полученные выражения в (7), имеем

$$
L=\left(\left(\alpha_{1}-\beta_{1}\right) I+\beta_{1} J\right) \otimes I_{3}-\mathcal{A}\left(G_{k, n-1}\right),
$$

где $\alpha_{1}=\alpha_{0}+(k-1) \beta_{0}-k(k-1)\left(\alpha_{0}-\beta_{0}\right)^{-1}=\alpha_{0}-(k-1)\left(\beta_{1}-\beta_{0}\right), \beta_{1}=k\left(\alpha_{0}-\right.$ $\left.-\beta_{0}\right)^{-1}, I, J \in M_{k}$. Легко видеть, что $\left(\alpha_{1}-\beta_{1}\right) I+\beta_{1} J=C\left(\alpha_{1}, \beta_{1}\right)$, и следователыно, $\mathscr{A}\left(\alpha_{0}, \beta_{0}\right) \sim B\left(\alpha_{1}, \beta_{1}\right)$, что и требовалось доказать.
4. Спектры графов де Брейна. Прежде, чем перейти к нахождению собствешшых зиачений матрицы смежности графа $G_{k, n}$, докажем ряд вспомогательных утверждении.

Лемма 1. В услооиях следствия 1 многочлен $P_{\mathcal{A}}(\Omega)=\operatorname{det} \mathcal{A}\left(\alpha_{0}, \beta_{0}\right)$ представим в виде

$$
\begin{equation*}
P_{\mathfrak{A}}(\lambda)=\left(\alpha_{0}+(k-1) \beta_{0}-2 k\right) \prod_{i=0}^{n-1}\left(\alpha_{i}-\beta_{i}\right)^{(k-1) k^{n-1-i}} \tag{8}
\end{equation*}
$$

где $\alpha_{i}=\alpha_{i-1}-(k-1)\left(\beta_{i}-\beta_{i-1}\right), \beta_{i}=k /\left(\alpha_{i-1}-\beta_{i-1}\right), i=\overline{1, n-1}$.
Доказательство. Если $\mathcal{A}=\mathcal{A}\left(G_{k, n}\right)$, тов результате последовательного применения теоремы 2 к матрицам $\mathcal{A}\left(\alpha_{0}, \beta_{0}\right), \mathcal{A}\left(\alpha_{1}, \beta_{1}\right), \ldots, \mathcal{A}\left(\alpha_{n-2}, \beta_{n-2}\right)$ на ($n-1$)-м шаге матрица $\mathcal{A}\left(\alpha_{0}, \beta_{0}\right)$ будет иметь вид

$$
B\left(\alpha_{n-1}, \beta_{n-1}\right)=\sum_{j=0}^{n-2} \bullet\left(\alpha_{j}-\beta_{j}\right) I_{j}+\mathcal{A}\left(\alpha_{n-1}, \beta_{n-1}\right),
$$

где I_{j} - единичная матрица порядка $(k-1) k^{n-1-j}$, а $\mathcal{A}\left(\alpha_{n-1}, \beta_{n-1}\right)=$ $=C\left(\alpha_{n-1}, \beta_{n-1}\right)-\mathcal{A}\left(G_{k, 1}\right)$. Так как $\mathcal{A}\left(G_{k, 1}\right)=2 J, J \in M_{k}$, то $\operatorname{det} \mathcal{A}\left(\alpha_{n-1}, \beta_{n-1}\right)=$ $=\alpha_{n-1}+(k-1) \beta_{n-1}-2 k$. Но так как $\alpha_{n-1}+(k-1) \beta_{n-1}=\alpha_{n-2}+(k-1) \beta_{n-2}=\ldots=$ $=\alpha_{0}+(k-1) \beta_{0}$, что усматривается из рекуррентных соотношений для α_{j} и β_{j}, то отсюдда получаем (8).

Легко видеть, что каждой разности $\gamma_{i}=\alpha_{i}-\beta_{i}, i=\overline{1, n-1}$, соответствует непрерывная дробь, [6] $b_{0}+K_{j=1}^{i}\left(a_{j} / b_{j}\right)$, где $b_{0}=b_{j}=\alpha_{0}+(k-1) \beta_{0}(j=\overline{1, i-1})$, $b_{i}=\alpha_{0}-\beta_{0}, a_{j}=-k^{2}, j=\overline{1, i}$. Поэтому в дальнейшем понадобится следующее утверждение.

Лемма 2. Если S_{n}, R_{n} и f_{n} - соответственно пе числитель, знаменатель и подходлщая дробь непрерывной дроби $b_{0}+K\left(a_{j} / b_{j}\right)$, где $a_{j}=-a, a \in N$, $b_{0}=b_{j}=\lambda$ - действительная переменная, то $S_{n}=S_{n}(\lambda, a)$ и $R_{n}=R_{n}(\lambda, a)$ являются миогочленами по λ вида

$$
S_{n}(\lambda, a)=R_{n+1}(\lambda, a)=a^{(n+1) / 2} U_{n+1}(\lambda / 2 \sqrt{a})=
$$

$$
\begin{gather*}
=\sum_{i=0}^{m}(-1)^{i}\binom{n+1-i}{i} a^{i} \lambda^{n+1-2 i} \tag{9}\\
f_{n}=f_{n}(\lambda, a)=\sqrt{a} U_{n+1}(\lambda / 2 \sqrt{a}) / U_{n}(\lambda / 2 \sqrt{a}) \tag{10}
\end{gather*}
$$

где $U_{n}(x)$ - многочлен Чебышева второго рода $(m=[(n+1) / 2])$.
Доказательство. В условиях леммы система разностных уравнений, из которой определяются S_{n} и R_{n} непрерывной дроби $\lambda+K(-a / \lambda)$, имеет вид

$$
\begin{align*}
& S_{n}(\lambda, a)=\lambda S_{n-1}(\lambda, a)-a S_{n-2}(\lambda, a), n=1,2,3, \ldots, \\
& R_{n}(\lambda, a)=\lambda R_{n-1}(\lambda, a)-a R_{n-2}(\lambda, a), n=1,2,3, \ldots, \tag{11}
\end{align*}
$$

с начальными условиями $S_{0}(\lambda, a)=\lambda, S_{-1}(\lambda, a)=1, R_{0}(\lambda, a)=1, R_{-1}(\lambda, a)=0$. Легко видеть, что $R_{n}(\lambda, a)=S_{n-1}(\lambda, a)$ и вычисление подходящей дроби $f_{n}(\lambda, a)$ связано с решением однородного разностного уравнения (11), общее решение которого имеет вид

$$
\begin{equation*}
S_{n}(\lambda, a)=d_{1} x_{1}^{n}+d_{2} x_{2}^{n} \tag{12}
\end{equation*}
$$

где x_{1}, x_{2} - корни характеристического уравнения $x^{2}-\lambda x+a=0$ для разностного уравнения (11): $x_{1}=\sqrt{a}\left(v+\sqrt{v^{2}-1}\right), x_{2}=\sqrt{a}\left(v-\sqrt{v^{2}-1}\right), v=\lambda / 2 \sqrt{a}$, при этом $v \neq \pm 1$, так как $x_{1} \neq x_{2} ; d_{1}$ и d_{2} определяются из (12): $d_{1}+d_{2}=\lambda$, $d_{1} x_{1}+d_{2} x_{2}=\lambda^{2}-a$. Находим $d_{1}=\sqrt{a}(v+\gamma), d_{2}=\sqrt{a}(v-\gamma)$, где $\gamma=\left(2 v^{2}-1\right) \times$ $\times\left(2 \sqrt{v^{2}-1}\right)^{-1}$. Отсюда следует

$$
\begin{aligned}
& S_{n}(\lambda, a)=a^{(n+1) / 2}\left\{(v+\gamma)\left(v+\sqrt{v^{2}-1}\right)^{n}+(v-\gamma)\left(v-\sqrt{v^{2}-1}\right)^{n}\right\}= \\
= & a^{(n+1) / 2} \frac{\left(v+\sqrt{v^{2}-1}\right)^{n+2}-\left(v-\sqrt{v^{2}-1}\right)^{n+2}}{2 \sqrt{v^{2}-1}}=a^{(n+1) / 2} U_{n+1}(\lambda / 2 \sqrt{a})
\end{aligned}
$$

где

$$
U_{n+1}(\dot{v})=\sum_{j=1}^{\star A_{j}=\left(D_{1}(1), \ldots, N_{k}^{(k)}\right)^{T}}=\sum_{i=0}^{m}(-1)^{i}\binom{n+1-i}{i}(2 v)^{n+1-2 i}
$$

- многочлен Чебышева второго рода [7]. Лемма доказана.

Заметим, что корни многочлена $S_{n}(\lambda, a)$ определяются выражением $\lambda_{i}=$ $=2 \sqrt{a} \cos i \pi /(n+1), i=\overline{1, n}$, поскольку он тождественно совпадает с многочленом $U_{n+1}(\lambda / 2 \sqrt{a})$.

Теорема 3. Характеристический многочлен неориентированного графа де Брейна $G=G_{k, n}$ может быть факторизован в виде

$$
\begin{equation*}
P_{G}(\lambda)=k^{\dot{h}}(\lambda-2 k) U_{n}^{k-1}(\lambda / 2 k) \prod_{i=1}^{n-1}\left\{k^{i} U_{i}(\lambda / 2 k)\right\}^{(k-1)^{2} k^{n-1-1}} \tag{13}
\end{equation*}
$$

где $U_{i}(x)$ - многочлены Чебьшева второго рода, $h=n(k-1)$.
Доказательство. Рассмотрим простейший случай матрицы C, когда $\alpha_{0}=\lambda, \beta_{0}=0$. Тогда при $A=A\left(\vec{G}_{k, n}\right)$ матрица $\mathcal{A}\left(\alpha_{0}, \beta_{0}\right)=\mathcal{A}(\lambda)=\lambda I-\mathcal{A}\left(G_{k, n}\right)$

и, следовательно, $P_{\lambda}(\lambda)=P_{G}(\lambda)$ - характеристический многочлен графа $G_{k, n}$. В данном случае $\alpha_{i}+(k-1) \beta_{i}=\alpha_{i-1}+(k-1) \beta_{i-1}=\ldots=\alpha_{0}+(k-1) \beta_{0}=\lambda$ и разность $\alpha_{i}-\beta_{i}=\alpha_{i-1}+(k-1) \beta_{i-1}-k^{2} /\left(\alpha_{i-1}-\beta_{i-1}\right)$ можно представить в виде i-й подходящей дроби $f_{i}(\lambda, a)$ непрерывной дроби $\lambda+K(-a / \lambda)$, где $a=k^{2}$. Тогда на основании леммы 2 находим $f_{i}\left(\lambda, k^{2}\right)=k U_{i+1}(\lambda / 2 k) / U_{i}(\lambda / 2 k)$. При подстановке полученных выражений в (8) получаем

$$
P_{G}(\lambda)=(\lambda-2 k) \prod_{i=0}^{n-1}\left\{k U_{i+1}(\lambda / 2 k) / U_{i}(\lambda / 2 k)\right\}^{(k-1) k^{n-1-i}}
$$

откуда следует (13).
Из леммы 2 и теоремы 3 легко вывести следующее утверждение.
Следствие 2. Спектром графа $G_{k, n}$ является

$$
\operatorname{Sp} G_{k, n}=\left[\begin{array}{ccc}
2 k, & \left\{2 k \cos \frac{i \pi}{n+1}\right\}_{i=\overline{1, n}}, & \left\{2 k \cos \frac{i \pi}{j+1}\right\}_{j=\overline{1, n-1}}^{i=\overline{1, j}} \\
1, & k-1, & (k-1)^{2} k^{n-1-j}
\end{array}\right] .
$$

Теорема 4. Пусть $G_{k, n}-\imath р а ф ~ д е ~ Б р е и ̆ н а ~ и ~ t\left(G_{k, n}\right)$ означает число остовных деревьев, содержацихся в $G_{k, n}$. Тогда

$$
\begin{equation*}
t\left(G_{k, n}\right)=(n+1)^{k-1} \prod_{i=1}^{n-1}\left\{k^{i}(i+1)\right\}^{(k-1)^{2} k^{n-1-i}} \cdot \dot{k}^{n(k-2)} . \tag{14}
\end{equation*}
$$

Доказательство. Для любого регулярногомультиграфа G степени $r t(G)=m^{-1} \prod_{i=2}^{m}\left(r-\lambda_{i}\right)=m^{-1} P_{G}^{\prime}(r)$, где λ_{i} - собственные значения мультиграфа G, m - его порядок (известное утверждение Хученройтера [5]). Для графа $G_{k, n} r=2 k, m=k^{n}$. Тогда, используя теорему 3 , имеем

$$
\begin{equation*}
P_{G}^{\prime}(2 k)=k^{M} U_{n}^{k-1}(1) \prod_{i=1}^{n-1}\left\{k^{i} U_{i}(1)\right\}^{(k-1)^{2} k^{n-1-i}} \tag{15}
\end{equation*}
$$

где $U_{i}(1)$ - сумма коэффициентов многочлена Чебышева второго рода $U_{i}(x)$, $i=\overline{1, n}$. Подставляя (15) в приведенное выше выражение для $t(G)$ и принимая во внимание тот факт, что $U_{i}(1)=i+1$ (см., например, [7]), получаем выражение (14).
5. Приложения и замечания. В заключение укажем на возможность использования найденного подхода для получения характеристических многочленов и спектров некоторых специальных классов графов. Пусть $\hat{T}_{k, n}$ — корневое дерево высоты n с q петлями у корня, при этом корневая вершина имеет степень h (без учета петель) и все h вершин, смежных с корневой, являются корнями полных k-нарных деревьев высоты $n-1$. Нетрудно убедиться, что матрицей смежности дерева $\hat{T}_{k, n}$ является квадратная матрица порядка $1+$ $+h\left(k^{n}-1\right) /(k-1)$ вида

$$
\mathcal{A}\left(\hat{T}_{k, n}\right)=\left[\begin{array}{c|c}
\mathcal{A}\left(\hat{T}_{k, n-1}\right) & O_{2} \\
\hline O_{2}^{T} & D^{T} \\
O_{1}
\end{array}\right],
$$

где $D-\left(h k^{n-2} \times h k^{n-1}\right)$-матрица вида (1); O_{1} и O_{2} - нулевые матрицы с размерами соответственно $h k^{n-2} \times h k^{n-1}$ и $\left(1+h\left(k^{n-2}-1\right) /(k-1)\right) \times h k^{n-1}$. Представим в блочно диагональном виде матрицу $\lambda I=\lambda \dot{+} \dot{\sum}_{i=0}^{n-1} \lambda I_{h k^{i}}$, что соответствует блочному разбиению матрицы $\mathcal{A}\left(\hat{T}_{k, n}\right)$. В результате последовательного исключения элементов (ненулевых) в подматрицах $D^{(i)}$ матриц $\lambda I-$ $-\mathcal{A}\left(\hat{T}_{k, n-i}\right), i=\overline{0, n-1}\left(D^{(0)}=D\right)$, получаем, что

где $f_{n-1-i}(\lambda, k)=\lambda+{ }_{j=1}^{n-1-i}\left(-a_{j} / \lambda\right), a_{j}=k, f_{0}=\lambda$. Тогда на основании леммы 2 характеристический многочлен дерева может быть факторизован в виде

$$
\begin{align*}
& P_{\hat{T}}(\lambda)=k^{(n-1) / 2} h\left\{h^{-1} \sqrt{k}(\lambda-2 g) U_{n}(\lambda / 2 \sqrt{k})-U_{n-1}(\lambda / 2 \sqrt{k})\right\} \times \\
& \quad \times\left\{k^{n / 2} U_{n}(\lambda / 2 \sqrt{k})\right\}^{h-1}\left[\prod_{i=1}^{n-1}\left\{k^{i / 2} U_{i}(\lambda / 2 \sqrt{k})\right\} /\right]^{h(k-1)}, \tag{16}
\end{align*}
$$

где $U_{i}(x)$ - многочлены Чебышева второго рода, $q=k^{n-1-i}$.
При $g=0, h=k$ из (16) получаем соотношение для характеристического многочлена полного высоты $n k$-нарного дерева

$$
P_{T}(\lambda)=k^{(n+1) / 2} U_{n+1}(\lambda / 2 \sqrt{k}) \prod_{i=1}^{n}\left\{k^{i / 2} U_{i}(\lambda / 2 \sqrt{k})\right\}^{(k-1) k^{n-i}},
$$

откуда следует полученный ранее в $[8,9]$ его спектр. При $g=0, h=k=1$ из (16) следует известное [5] выражение для характеристического многочлена простой цепи порядка $n+1$. В случае $g=1, h=k-1$ из (16) получаем соотношение для характеристического многочлена остовных деревьев с петлей у корня графа де Брейна [10]. Указанные деревья обладают тем замечательным свойством, что их прямая сумма по ребрам является представлением графа $G_{k, n}$ [10]. Спектр графа де Брейна $G_{2, n}$ получен ранее в работе [11].

1. Воеводин B, B.,Tыртьиников E. E. Вычислительные процессы с теплицевыми матрицами. М.: Наука, 1987.- 320 c.
2. Ablow C.M., Brenner J.L. Roots and canonical forms for circulant matrices // Trans. Amer. Math. Soc.- 1963.- 107, N 2.- P. 360-376.
3. Де Брейн Н. Г. Одна комбинаторная задача // Киберн. сб. - 1969.-Вып. 6.- С.33-40.
4. Кратко М. И., Строк В. В. Последовательности де Брейна с ограничениями // Вопросы кибернетики. Комбинаторныи анализ и теория графов.-М.. Наука, 1980.-С.80-84.
5. Цееткович Д., Дуб М., Захс X. Спектры графов. Теория и применение.- Киев: Наук. думка, 1984.-384 c.
6. Джоунс У., Трон В. Непрерывные дроби.- М.: Мир, 1985.-416 с.
7. Риордан Дж. Комбинаторные тождества.- М.: Мир, 1982.-256 с.
8. Gutman I. Characteristic and matching polynomials of some compound graphs // Publ. Inst. Math.-1980.- 27.- P. 61-66.
9. Raut G. Spectrul arborilor k-ary completi // Studii si cercetari matematice.- 1983.- 35, N 3.- P. 183-188.
10. Хоменко Н. П., Строк В. В. $-T$-факторизация $\mathfrak{G B}$-графов // Теория графов.- Киев: Ин-т математики АН УССР, 1977.-С.135-142.
11. Strok V., Yaworski E. Spectrum of the binary de Bruijn graph // XVII Yugoslav. Symp. Oper. Res. (Dubrovnik-Kupari; 9-12.10.1990).- Beograd: Naucna Knjiga, 1990.- P. 165-168.
