О ПЕРИОДИЧЕСКОЙ ЗАДАЧЕ УПРАВЛЕНИЯ ДЛЯ БЕСКОНЕЧНЫХ ДИФФЕРЕНЦИАЛЬНЫХ СИСТЕМ С ИМПУЛЬСНЫМ ВОЗДЕИСТВИЕМ

Для нелинейных дифференциальных систем с импульсным воздействием в пространстве ограниенных последовательностей предлагается модификация численно-аналитического метода А. М. Самойленко. Для линейной системы уравнений эта модификация позволяет в некоторых случаях решать периодическую задачу управления с наперед заданной точностью.
Для нелінійних диференціальних систем з імпульсною дією в просторі обмежених послідовностей пропонується модифікація чисельно-аналітичного методу А. М. Самойленка. Для лінійної системи рівнянь ця модифікація дає можливість у деяких випадках розв'язати періодичну задачу керування з наперед указаною точністю.

Рассмотрим систему дифференциальных уравнений с импульсами

$$
\begin{equation*}
\frac{d x}{d t}=\varepsilon f(t, x) \quad \text { при } \quad t \neq t_{i},\left.\quad \Delta x\right|_{t=t_{i}}=\varepsilon H_{i}\left(t_{i}, x\right) \tag{1}
\end{equation*}
$$

где $x=\left(x_{1}, x_{2}, \ldots\right)$ принадлежит пространству गை ограниченных числовых последовательностей с нормой $\|x\|=\sup \left\{\left|x_{1}\right|,\left|x_{2}\right| \ldots\right\}, f(t, x)$ и $H_{i}\left(t_{i}, x\right)-$ сче́тномерные непрерывные и периодические по t с периодом T вектор-функции, определенные в некоторой области

$$
D^{*}:(t, x) \in R^{1} \times D=(-\infty,+\infty) \times\left\{x \in J_{\mid}\|x\| \leq R=\text { const }\right\},
$$

ε - положительный параметр, а возмущающие функции связаны условием периодичности $H_{i+b}=H_{i}, t_{i+b}-t_{i}=T$, где b - некоторое натуральное число, $i=$ $=\ldots,-2,-1,0,1,2, \ldots$.

В работе [1] показано, что если в области D^{*} :

1) $\max _{t \in[\tau, \tau+T]}\left\{\|f(t, x)\|,\left\|H_{i}(t, x)\right\|\right\}=M=$ const $<\infty$;
2) $\max _{t \in[\tau, \tau+T]}\left\{\|f(t, \bar{x})-f(t, \overline{\bar{x}})\|,\left\|H_{i}(t, \bar{x})-H_{i}\left(t_{i}, \overline{\bar{x}}\right)\right\|\right\} \leq L\|\bar{x}-\overline{\bar{x}}\|$,

где $0<L=\mathrm{const}<\infty ; x, \bar{x}, \overline{\bar{x}} \in D$, а τ - произвольная постоянная из R^{1}, то существует единственное управление (μ_{1}, μ_{2}) такое, что уравнение с импульсами

$$
\begin{align*}
& \frac{d x}{d t}=\varepsilon f(t, x)-\mu_{1}, t \neq t_{i} \\
& \left.\Delta x\right|_{t=t_{i}}=\varepsilon H_{i}\left(t_{i}, x\right)-\mu_{2} \tag{2}
\end{align*}
$$

имеет T-периодическое решение $x\left(t, \tau, x_{0}\right) \in D^{*}$, удовлетворяющее начальному условию $x\left(\tau, \tau, x_{0}\right)=x_{0}$, а

$$
x_{0} \in D_{f}=\left\{x \in \mathbb{M}_{\mid}\|x\| \leq R-\varepsilon(p+1) M T / 2\right\} \subset D .
$$

где $p=b / T$, а $\varepsilon>0$ настолько мало, что $\varepsilon(p+1) M T / 2<R$.
В настоящей статье получено такое решение. Рассмотрим укороченную (конечномерную) систему уравнений, соответствующую ургпнению (1):

$$
\frac{d^{(n)}}{d t}=\varepsilon \stackrel{(n)}{f}(t, \stackrel{(n)}{x}), t \neq t_{i}
$$

$$
\begin{equation*}
\left.\Delta \stackrel{(n)}{x}\right|_{t=t_{i}}=\varepsilon \stackrel{(n)}{H_{i}}\left(t_{i}, \stackrel{(n)}{x}\right) \tag{3}
\end{equation*}
$$

Здесь $\stackrel{(n)}{x}=\left(x_{1}, \dot{x_{2}}, \ldots, x_{n}, 0, \ldots\right), \stackrel{(n)}{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right), \stackrel{(n)}{H_{i}}=\left(h_{1}^{(i)}, h_{2}^{(i)}, \ldots, h_{n}^{(i)}\right)$, где $\left(h_{1}^{(i)}, h_{2}^{(i)}, \ldots\right)=H_{i}$.

При любом $n \in(1,2, \ldots)$ существует единственное управление $\left(\stackrel{(n)}{\mu_{1}}, \stackrel{(n)}{\mu_{2}}\right)$ такое, что решение системы уравнений с импульсами

$$
\begin{gather*}
\frac{d^{(n)}}{d t}=\varepsilon \stackrel{(n)}{f}(t, \stackrel{(n)}{x})-\stackrel{(n)}{\mu}, t \neq t_{i} \\
\left.\Delta \stackrel{(n)}{x}\right|_{t=t_{i}}=\varepsilon \stackrel{(n)}{H_{i}}\left(t_{i}, \stackrel{(n)}{x}\right)-\stackrel{(n)}{\mu_{2}} \tag{4}
\end{gather*}
$$

$\stackrel{(n)}{x}\left(t, \tau, \stackrel{(n)}{x_{0}}\right)$ с начальными значениями $\tau, \stackrel{(n)}{x_{0}} \in D_{f}$, будет T-периодическим. Приведем условия, при которых $\lim _{n \rightarrow \infty} \stackrel{(n)}{x}(t)=x(t)$.

Система (4) не является укороченной по отношению к системе (2), и аналог теоремы К. П. Персидского об укорочении неприменим.

Пусть моменты импульсов t_{i} разделены, т. е. $t_{i+1}-t_{i} \geq c=$ const >0 при $i=$ $=1,2, \ldots$. Тогда на периоде будет конечное число импульсов, которое обозначим b.

Все дальнейшие рассуждения относятся к отрезку $[\tau, \tau+T]$, ибо при любом n решение $\stackrel{(n)}{x}\left(t, \tau, \stackrel{(n)}{x_{0}}\right) T$-периодично [1].

Учитывая результат следствия 2 из [1], получаем

где $\stackrel{(n)}{x}_{m}$ определяются рекуррентными формулами (7) из [1]. Обозначим $\max \{\varepsilon M, \varepsilon b M / p T\}=N$.

Лемма. Из последовательностей $\left.\left\{\begin{array}{l}(n) \\ \mu_{1}\end{array}\right\} и \underset{(n)}{\mu_{2}}\right\}$ можно выделить подпоследовательности $\left\{\stackrel{(k)}{\mu_{1}}\right\}$ и $\left\{\stackrel{(k)}{\mu_{2}}\right\}$, сходяциеся соответственно к некоторым элементам μ_{1}^{0} и μ_{2}^{0} из ग/ в слабом смысле.

Действительно, последовательности $\left\{\left\|{ }^{(n)}{ }^{\mu} 1\right\|\right\}$ и $\left\{\left\|\stackrel{(n)}{\mu}{ }_{2}\right\|\right\}$ ограничены постоянной N. Это позволяет применить метод диагонализации и получить требуемое утверждение.

Для простоты записей положим $k=n$ и вернемся к рассмотрению уравнений (4).

Решение $\stackrel{(n)}{x}\left(t, \tau, \stackrel{(n)}{x}_{x_{0}}\right)$ этой системы можно представить в виде

$$
\begin{aligned}
& \left\|\stackrel{(n)}{\mu_{1}}\right\| \leq \lim _{m \rightarrow \infty} \frac{\varepsilon}{T} \int_{\tau}^{\tau+T}\left\|\stackrel{(n)}{f}\left(s, \stackrel{(n)}{x_{m}}\left(s, \tau, \stackrel{(n)}{x_{0}}\right)\right)\right\| d s \leq \frac{\varepsilon}{T} M T=\varepsilon M, \\
& \left\|\stackrel{(n)}{\mu_{2}}\right\| \leq \lim _{m \rightarrow \infty} \frac{\varepsilon}{p T} \sum_{\tau<t_{j}<\tau+T}\left\|H_{j}\left(t_{j},{ }_{(n)}^{x_{m}}\left(t_{j}, \tau, \stackrel{(n)}{x_{0}}\right)\right)\right\| \leq \frac{\varepsilon}{p T} M b,
\end{aligned}
$$

$$
\begin{align*}
\stackrel{(n)}{x}\left(t, \tau, \stackrel{(n)}{x_{0}}\right) & =\stackrel{(n)}{x_{0}}+\int_{\tau}^{t}\left[\varepsilon \stackrel{(n)}{f}\left(\sigma, \stackrel{(n)}{x}\left(\sigma, \tau, \stackrel{(n)}{x_{0}}\right)\right)-\stackrel{(n)}{\mu_{1}}\right] d \sigma+ \\
& +\sum_{\tau<t_{i}<t}\left[\varepsilon \stackrel{(n)}{H_{i}}\left(t_{i}, \stackrel{(n)}{x}\left(t_{i}, \tau, \stackrel{(n)}{x_{0}}\right)\right)-\stackrel{(n)}{\mu_{2}}\right] . \tag{5}
\end{align*}
$$

Оценивая его по норме, получаем

$$
\begin{aligned}
\|\stackrel{(n)}{x}\| & \leq\left\|\stackrel{(n)}{x_{0}}\right\|+\| \int_{\tau}^{t}\left[\varepsilon \stackrel{(n)}{f}(\sigma, \stackrel{(n)}{x})-\stackrel{(n)}{\mu_{1}}\right] d \sigma+ \\
& +\sum_{\tau<t_{i}<t}\left[\varepsilon \stackrel{(n)}{H_{i}}\left(t_{i}, \stackrel{(n)}{x}\left(t_{i}, \tau, \stackrel{(n)}{x_{0}}\right)\right)-\stackrel{(n)}{\mu_{2}}\right] \|
\end{aligned}
$$

или, учитывая выражения (4) из [1], имеем

$$
\begin{aligned}
\|\stackrel{(n)}{x}\| \leq & \left\|\stackrel{(n)}{x_{0}}\right\|+\varepsilon \| \int_{\tau}^{t}\left[\stackrel{(n)}{f}(\sigma, \stackrel{(n)}{x})-\frac{1}{T} \int_{\tau}^{\tau+T} \stackrel{(n)}{f}(s, \stackrel{(n)}{x}) d s\right] d \sigma+ \\
& +\sum_{\tau<t_{i}<t}\left[\stackrel{(n)}{H_{i}}\left(t_{i}, \stackrel{(n)}{x}\right)-\frac{1}{p T} \sum_{\tau<t_{i}<\tau+T} \stackrel{(n)}{H}_{i}\left(t_{i}, \stackrel{(n)}{x}\right)\right] \| .
\end{aligned}
$$

Отсюда, принимая во внимание утверждение леммы из [1], получаем оценку для $\stackrel{(n)}{x}\left(t, \tau, \stackrel{(n)}{x_{0}}\right):$

$$
\begin{equation*}
\|\stackrel{(n)}{x}\| \leq\| \|_{x_{0}}^{(n)} \|+\varepsilon M \alpha(t) \tag{6}
\end{equation*}
$$

справедливую при всех $t \in[\tau, \tau+T]$, где $\alpha(t)=2(1+p)(t-\tau)(1-(t-\tau) / T)$. Из неравенства (6) следует, что последовательность $\left\{\begin{array}{c}n) \\ x\end{array}\right\}$ равномерно ограничена на отрезке $[\tau, \tau+T]$.

Пусть \bar{t} и \bar{t} принадлежат отрезку [$\left.\tau, t_{1}\right]$, где t_{1} - момент первого импульса на отрезке $[\tau, \tau+T], \bar{t}>\overline{\bar{t}}$. Тогда

$$
\begin{gathered}
\stackrel{(n)}{x}(\bar{t})-\stackrel{(n)}{x}(\bar{t})=\int_{\tau}^{t}\left[\varepsilon \stackrel{(n)}{f}(\sigma, \stackrel{(n)}{x})-\stackrel{(n)}{\mu_{1}}\right] d \sigma-\int_{\tau}^{i}[\varepsilon \stackrel{(n)}{f}(\sigma, \stackrel{(n)}{x})-\stackrel{(n)}{\mu}] d \sigma= \\
=\int_{i}^{i}\left[\varepsilon \stackrel{(n)}{f}(\sigma, \stackrel{(n)}{x})-\stackrel{(n)}{\mu_{1}}\right] d \sigma .
\end{gathered}
$$

Отсюда

$$
\begin{align*}
& \|\stackrel{(n)}{x}(\bar{t})-\stackrel{(n)}{x}(\bar{t})\| \leq \int_{-}^{i}\|\varepsilon \stackrel{(n)}{f}(\sigma, \stackrel{(n)}{x})-\stackrel{(n)}{\mu} 1\| d \sigma \leq \\
\leq & \int_{i}^{i}[\varepsilon\|\stackrel{(n)}{f}(\sigma, \stackrel{(n)}{x})\|+\|\stackrel{(n)}{\mu}\|] d \sigma \leq(\varepsilon M+N)\|\bar{t}-\bar{t}\| . \tag{7}
\end{align*}
$$

Из неравенства (7) следует равностепенная непрерывность последовательности $\left\{\begin{array}{l}(n) \\ x\end{array}\right\}$ на $\left[\tau, t_{1}\right]$.

На основании теоремы Арцела - Асколи из последовательности $\left\{\begin{array}{l}(n) \\ x_{1}\end{array}\right\}$ можно выбрать подпоследовательность ${ }_{\left(\begin{array}{c}\left(\alpha_{1}\right) \\ x_{1}\end{array},\left(\alpha_{2}\right)\right.}^{x_{1}}, \ldots \stackrel{\left(\alpha_{m}\right)}{x_{1}}, \ldots$, сходящуюся равномерно по t на отрезке $\left[\tau, t_{1}\right]$.

Из последовательности $\stackrel{\left(\alpha_{1}\right)}{x_{2}},\left(\boldsymbol{\alpha}_{2}\right), \ldots \stackrel{\left(\alpha_{m}\right)}{x_{2}}, \ldots$ выберем сходящуюся подпоследовательность $\stackrel{\left(\beta_{1}\right)}{x_{2},\left(\beta_{2}\right)}{\underset{x}{2}}^{2}, \ldots,{ }_{\left(\beta_{m}\right)}^{x_{2}}, \ldots$. Этот процесс продолжим неограниченно. По методу диагонализации из последовательности $\left\{\begin{array}{l}(n) \\ x\end{array}\right\}$ выберем подпо$\left(\alpha_{1}\right)\left(\beta_{2}\right) \quad\left(\gamma_{3}\right)$
 натам на отрезке $\left[\tau, t_{1}\right]$. Обозначим ее $\left\{\begin{array}{c}\left(\begin{array}{l}n_{1} \\ x\end{array}\right\} \text {. }\end{array}\right.$

Рассмотрим теперь последовательность $\left\{\begin{array}{l}\left(n_{1}\right) \\ x\end{array}\right\}$ на отрезке $\left[t_{1}+0, t_{2}\right]$, где $t_{2}-$ второй момент импульсного воздействия на отрезке $[\tau, \tau+T], t_{2}>t_{1}$. При всех $\bar{t}, \overline{\bar{t}}$ из $\left[t_{1}+0, t_{2}\right]$ для последовательности $\left\{\begin{array}{c}\left(n_{1}\right) \\ x\end{array}\right\}$ неравенства (6) и (7) справедливы, поэтому из последовательности $\left\{\begin{array}{c}\left(n_{1}\right) \\ x\end{array}\right\}$ выделим последовательность $\left\{\begin{array}{c}\left.n_{2}\right) \\ x\end{array}\right\}$, сходящуюся равномерно по координатам на отрезках $\left[\tau, t_{1}\right],\left[t_{1}+0, t_{2}\right]$.

Через конечное число шагов получаем последовательность $\left\{\begin{array}{l}(s) \\ x\end{array}\right\}$, являющщуюся подпоследовательностыю последовательности $\left\{\begin{array}{l}(n) \\ x\end{array}\right\}$, причем $\left\{\begin{array}{l}(s) \\ x\end{array}\right\}$ сходится равномерно по координатам на каждом из отрезков, входящих в $[\tau, \tau+T]$ и не содержащих импульсных моментов t_{i}, к некоторой T-периодической век-тор-функции $x^{0}(t)$.

Говорят, что функция $z(t, x)=\left\{z_{1}(t, x), z_{2}(t, x), \ldots\right\} \in C_{\text {Сір }}(x)$, т. е. удовлетворяет усиленным условиям Коши - Липшица по x в области D^{*}, если для любых двух точек $\bar{x}=\left(x_{1}, \ldots, x_{m}, x_{m+1}^{\prime}, x_{m+2}^{\prime}, \ldots\right)$ и $\bar{x}=\left(x_{1}, \ldots, x_{m}, x_{m+1}^{\prime \prime}, x_{m+2}^{\prime \prime}, \ldots\right)$ из области D справедливо неравенство

$$
\left|z_{s}(t, \bar{x})-z_{s}(t, \overline{\bar{x}})\right| \leq \delta(t) \Delta x \varepsilon_{s}(m), s=1,2,3, \ldots, t \in R^{1},
$$

где $\delta(t)$ - непрерывная по t функция, $\Delta x=\sup \left\{\left|x_{m+1}^{\prime}-x_{m+1}^{\prime \prime}\right|, \ldots\right\}, \varepsilon_{s}(m) \rightarrow 0$ при $m \rightarrow \infty$.

Рассмотрим последовательность дифференциальных систем

$$
\begin{gather*}
\frac{d^{(s)}}{d t}=\varepsilon \stackrel{(s)}{f}(t, \stackrel{(s)}{x})-\stackrel{(s)}{\mu_{1}}, t \neq t_{i} \\
\left.\Delta^{(s)}\right|_{t=t_{i}}=\varepsilon \stackrel{(s)}{H_{i}\left(t_{i}, \stackrel{(s)}{x}\left(t_{i}\right)\right)-\stackrel{(s)}{\mu_{2}}} \tag{8}
\end{gather*}
$$

Предположим, что функции $f(t, x), H_{i}(t, x) \in C_{\text {Сір }}(x)$, при всех целых i и докажем, что в таком случае $x^{0}(t)=\lim _{s \rightarrow \infty} \stackrel{(s)}{x}\left(t, \tau, \stackrel{(s)}{x_{0}}\right) \equiv \bar{x}\left(t, \tau, x_{0}\right), t \in R^{1}$, где $x\left(t, \tau, x_{0}\right)$

- решение системы уравнений (2), а сходимость равномерно слабая.

Последовательность $\left\{\begin{array}{l}(s) \\ x\end{array}(t)\right\}$ запишем в виде

$$
\left(\begin{array}{c}
\stackrel{(1)}{x_{1}}(t) \\
\stackrel{(1)}{x}_{x_{2}}(t) \\
\cdot \\
\cdot \\
\cdot
\end{array}\right) ;\left(\begin{array}{c}
\stackrel{(2)}{x_{1}}(t) \\
\stackrel{(2)}{x_{2}}(t) \\
\cdot \\
\cdot \\
\cdot
\end{array}\right) ; \ldots ;\left(\begin{array}{c}
\stackrel{(n)}{x_{1}}(t) \\
\stackrel{(n)}{x_{2}}(t) \\
\cdot \\
\cdot \\
\cdot
\end{array}\right) ; \ldots,
$$

причем в каждом столбце, начиная с некоторого номера, все элементы равны нулю тождественно по t.

Зафиксируем число l и запишем неравенство

$$
\begin{aligned}
& \left|f_{l}\left(t \stackrel{(n)}{x_{1}}(t), \stackrel{(n)}{x_{2}}(t), \ldots\right)-f_{l}\left(t, x_{1}^{0}(t), x_{2}^{0}(t), \ldots\right)\right| \leq \\
& \leq\left|f_{l}\left(t, \stackrel{(n)}{x_{1}}(t), \stackrel{(n)}{x_{2}}(t), \ldots\right)-f_{l}\left(t, x_{1}^{0}(t), \ldots, x_{g}^{0}(t), \stackrel{(n)}{x_{g+1}}(t), \stackrel{(n)}{x_{g+2}}(t), \ldots\right)\right|+ \\
& +\left|f_{l}\left(t, x_{1}^{0}(t), \ldots, x_{g}^{0}(t), \stackrel{(n)}{x_{g+1}}(t), \stackrel{(n)}{x_{g+2}}(t), \ldots\right)-f_{l}\left(t, x_{1}^{0}(t), x_{2}^{0}(t), \ldots\right)\right| .
\end{aligned}
$$

Разности, стоящие в правой части, обозначим $A(l, g)$ и $B(l, g)$ соответственно. Поскольку $f \in C_{\mathrm{Eip}_{\text {_ }}}(x)$, то

$$
B(l, g) \leq \delta(t) \sup \left\{\left|x_{g+1}^{0}(t)-\stackrel{(n)}{x_{g+1}}(t)\right|,\left|x_{g+2}^{0}(t)-\stackrel{(n)}{x_{g+2}}(t)\right|, \ldots\right\} \varepsilon_{l}(g)
$$

где $\varepsilon_{l}(g) \rightarrow 0$ при $g \rightarrow \infty$, а значит, для любого сколь угодно малого числа v существует такой номер g^{0}, что $\varepsilon_{l}\left(g^{0}\right)<v$. Учитывая, что все функции ${ }^{(s)}(t)$, а значит и функция $x^{0}(t)$, равномерно ограничены по норме некоторой постоянной, которую обозначим K^{0}, приходим к неравенству

$$
\begin{equation*}
B\left(l, g^{0}\right) \leq 2 \delta(t) K^{0} \cdot \varepsilon_{l}\left(g^{0}\right)<2 \delta(t) K^{0} v \tag{9}
\end{equation*}
$$

Зафиксируем значение $g=g^{0}$. Тогда справедлива оценка

$$
\begin{equation*}
A\left(l, g^{0}\right) \leq 2 \delta(t) \varepsilon_{l}\left(g^{0}\right) \sup \left\{\left|x_{1}^{0}(t)-\stackrel{(n)}{x_{1}}(t)\right|, \ldots,\left|x_{g^{0}}^{0}(t)-\stackrel{(n)}{x}_{g^{0}}(t)\right|\right\} \tag{10}
\end{equation*}
$$

Но ${ }^{(s)} x(t)$ стремится в слабом смысле к $x^{0}(t)$ равномерно по t. Это означает, что найдется такой номер $N(l, v)$, что при $n \geq N(l, v)$ справедливо соотношение

откуда, учитывая оценку (10), приходим к неравенству

$$
A\left(l, g^{0}\right)+B\left(l, g^{0}\right)<\delta(t)\left(2 K^{0}+\varepsilon_{l}(0)\right) v
$$

Пусть t - произвольное значение аргумента из сегмента $[\tau, \tau+T]$, не

совпадающее с моментом импульса, а σ - сегмент, включающий t, не содержащий момента импульса такой, что $\sigma \subset[\tau, \tau+T]$. Обозначим $\delta=\max _{\sigma} \delta(t)$. Тогда равномерно относительно. $t \in \sigma$

$$
\left|f_{l}\left(t, \stackrel{(n)}{x_{1}}(t), \stackrel{(n)}{x_{2}}(t), \ldots\right)-f_{l}\left(t, x_{1}^{0}(t), x_{2}^{0}(t), \ldots\right)\right|<\delta\left(2 K^{0}+\varepsilon_{l}(0)\right) v
$$

как только $n \geq N(l, v)$. Это говорит о том, что равномерно по $t \in \sigma$ $f_{l}(t, \stackrel{(s)}{x}(t)) \rightarrow f_{l}\left(t, x^{0}(t)\right)$ при $s \rightarrow \infty$. Очевидно, последнее утверждение справедливо для всех $l=1,2,3, \ldots$. Переходя к пределу при $s \rightarrow \infty$ в первом равенстве системы уравнений (8), получаем

$$
\lim _{s \rightarrow \infty} \frac{d^{(s)} x(t)}{d t}=\frac{d}{d t} \lim _{s \rightarrow \infty}{ }^{(s)} x(t)=\varepsilon f\left(t, x^{0}(t)\right)-\mu_{1}^{0} \text { при } t \neq t_{i}
$$

Учитывая, что функции $H_{i}(t, x) \in C_{\mathrm{Cip}^{\prime}}(x)$ и проводя аналогичные рассуждения, имеем

$$
\lim _{s \rightarrow \infty} H_{i}\left(t_{i}, \stackrel{(s)}{x}\left(t_{i}\right)\right) \rightarrow H_{i}\left(t_{i}, x^{0}\left(t_{i}\right)\right)
$$

Справедливы соотношения

$$
\begin{aligned}
& \frac{d x^{0}(t)}{d t}=\varepsilon f\left(t, x^{0}(t)\right)-\mu_{1}^{0}, t \neq t_{i} \\
& \left.\Delta x^{0}\right|_{t=t_{i}}=\varepsilon H_{i}\left(t_{i}, x^{0}\left(t_{i}\right)\right)-\mu_{2}^{0}
\end{aligned}
$$

Но $x^{0}(t) T$-периодично. Тогда в силу единственности управления [1] справедливы равенства

$$
\mu_{1}^{0}=\mu_{1}, \mu_{2}^{0}=\mu_{2}, x^{0}(t)=x(t)
$$

Таким образом, существует такая подпоследовательность последовательности укороченных систем уравнений вида (3), что последовательность решений соответствующих систем уравнений (4) в слабом смысле удовлетворяет соотношению $\lim _{s \rightarrow \infty} \stackrel{(s)}{x}\left(t, \tau, \stackrel{(s)}{x}_{0}\right)=x\left(t, \tau, x_{0}\right)$, где $x\left(t, \tau, x_{0}\right)-T$-периодическое решение уравнения (2), причем $\mu_{k}=\lim _{s \rightarrow \infty} \stackrel{(s)}{\mu}_{k}, k=1,2$.

Более того, любая подпоследовательность последовательности $\left\{\begin{array}{c}(n) \\ \mu_{i}\end{array}\right\}, i=$ $=1,2$, содержит в себе сходящуюся подпоследовательность, причем каждая из них сходится в слабом смысле к одному и тому же пределу $\mu_{i}, i=1,2$. Это утверждение справедливо и для любой подпоследовательности последовательности $\left\{\stackrel{(n)}{x}\left(t, \tau, \stackrel{(n)}{x_{0}}\right)\right\}$. Каждая из них содержит в себе подпоследовательностъ, сходящуюся к одному и тому же пределу $x\left(t, \tau, x_{0}\right)$ в слабом смысле.

Докажем это утверждение для последовательности $\{\stackrel{(n)}{x}(t)\}$. Пусть $\left\{\stackrel{(r)}{x}\left(t, \tau,(r)\right.\right.$ ($\left.\left.x_{0}\right)\right\}$ - произвольная ее подпоследовательность, $r=1,2, \ldots$. Рассмотрим теперь соответствующую последовательность систем уравненеий вида (4), где индекс n заменен индексом r. Для нее справедливы все рассуждения,

приведенные выше. Это значит, что существует подпоследовательность $\left\{\stackrel{(l)}{x}\left(t, \tau, \stackrel{(l)}{x_{0}}\right)\right\}, l=1,2, \ldots$, последовательности $\{\stackrel{(r)}{x}\}$, которая слабо сходится опять же к функции $x\left(t, \tau, x_{0}\right)$ в то время, как $\left.\{\stackrel{l}{l})_{\left\{\mu_{i}\right.}^{\}}\right) \rightarrow \mu_{i}, i=1,2$, в силу единствености управления (μ_{1}, μ_{2}).

Покажем теперь, что и вся последовательность $\left\{\stackrel{(n)}{x}\left(t, \tau, \stackrel{(n)}{x_{0}}\right)\right\}, n=1,2, \ldots$, слабо сходится к $x\left(t, \tau, x_{0}\right)$, а последовательности $\left\{\begin{array}{l}(n) \\ \mu_{k}\end{array}\right\}-к \quad \mu_{k}, k=1,2, \ldots$, соответственно. Предположим противное, т. е. что соотношение

$$
\lim _{n \rightarrow \infty} \stackrel{(n)}{x}\left(t, \tau, \stackrel{(n)}{x_{0}}\right)=x\left(t, \tau, x_{0}\right)
$$

понимаемое в слабом смысле, не справедливо дляя $\stackrel{(n)}{x_{\rho}}\left(t, \tau, \stackrel{(n)}{x_{0}}\right)$, где $\stackrel{(n)}{x_{\rho}}-\rho$-я координата вектора $\stackrel{(n)}{x}$ в точке $\bar{t} \in[\tau, \tau+T]$. В таком случае существует такое число $\varepsilon_{0}>0$, что для любого сколь угодно большого $N>0$ найдется такой номер $m \geq N$, при котором

$$
\begin{equation*}
\left|x_{\rho}\left(\bar{t}, \tau, x_{0}\right)-\stackrel{(m)}{x_{\rho}}\left(\bar{t}, \tau, \stackrel{(m)}{x_{0}}\right)\right| \geq \varepsilon_{0} \tag{*}
\end{equation*}
$$

Выберем бесконечио возрастающую последовательность положительных чисел $N_{1}, N_{2}, \ldots, N_{k}, \ldots$ и по пей определим последовательность натуральных чисел $m_{k} \geq N_{k}, k=1,2, \ldots$, для которых справедливо неравенство (*), в которое вместо m поставлено m_{k}. Но последовательность $\left\{\begin{array}{c}\left(m_{k}\right) \\ x_{\rho}\end{array}\right\}$ является подпоследователынстью $\left\{\begin{array}{l}n \\ x_{\rho}\end{array}\right\}$, а зачит, содержит в себе сходящуюся к x_{ρ} подпоследовательность $\left\{\begin{array}{l}m_{i} \\ x_{\rho}\end{array}\right\}$. Это означает, что при некотором N_{0} для $m_{l} \geq N_{0}$ неравенство $\left(^{*}\right)$ для $\left\{\left\{_{m_{i}}^{x_{\rho}}\right\}\right.$ выполняться не может. Получили противоречие, доказывающщее представление (Δ).

Равенство $\mu_{k}=\lim _{n \rightarrow \infty} \stackrel{(n)}{\mu}, k=1,2$, доказывается аналогично. Отметим, что пределыный переход (Δ) осуществляется равномерно по t на любом отрезке из множества R^{1}, не содержащем момента импульсного воздействия.

Таким образом, справедлива следуюшая теорема.
Теорема 1. Пусть система уравнений (1) такова, что в области D^{*} выполняются условия (∇), функции $f(t, x), H_{i}(t, x) \in C_{\text {Сір }}(x)$ при всех целых आачениях i пепрерывны и периодичны по t с периодом T, причем возмуцающие фупкции связаны условием периодичности.

Тогда Т-периодическое решение $\stackrel{(n)}{x}\left(t, \tau, \stackrel{(n)}{x_{0}}\right)$ ситемы уравнений (4) в слабом смысле удовлетворяет условию (Δ), где $x\left(t, \tau, x_{0}\right)-T$-периодическое решепие системы уравнений (2), причем $\mu_{k}=\lim _{n \rightarrow \infty} \stackrel{(n)}{\mu}_{k}, k=1,2$.

Замечание Второе из условий (∇), а также требование, чтобы функции $f(t$, $x)$ и $H_{i}(t, x), i=\ldots,-1,0,1, \ldots$, удовлетворяли усиленным условиям Коши Липшица, можно заменить одним, а именно:

$$
\max _{t \in[\tau, \tau+T]}\left\{\|f(t, x)-f(t, \bar{x})\|, \quad\left\|H_{i}(t, x)-H_{i}(t, \bar{x})\right\|\right\} \leq \varepsilon(n)\|x-\bar{x}\|,
$$

где точки $x=\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots\right)$ и $\bar{x}=\left(x_{1}, \ldots, x_{n}, \bar{x}_{n+1}, \ldots\right)$ принадлежат области $D, \varepsilon(n) \rightarrow 0$ при $n \rightarrow \infty$.

Особо рассмотрим случай линейной системы уравнений

$$
\begin{equation*}
\frac{d x}{d t}=\varepsilon A(t) x, t \neq t_{j},\left.\quad \Delta x\right|_{t \neq t_{j}}=\varepsilon B_{j} x\left(t_{j}-0\right), \tag{11}
\end{equation*}
$$

где $x \in \mathfrak{M}, A(t)=\left[a_{i s}(t)\right]_{i, s=1}^{\infty}$ и $B_{j}=\left[{ }^{-} b_{i s}^{(j)}\right]_{i, s=1}^{\infty}$ - бесконечные матрицы, ε - положительный параметр, $j=\ldots,-1,0,1, \ldots$.

Пусть выполняются условия:

1) функции $a_{i s}(t), i, s=1,2, \ldots, T$-периодичны и непрерывны на R^{1};
2) $\sup \left\{\|A(t)\|_{0},\left\|B_{j}\right\|\right\} \leq M=$ const $<\infty$;
3) $B_{j+b}=B_{j}, t_{j+b}-t_{j}=T$, где b - некоторое натуральное число, значит моменты импульсов разделены.

Здесь обозначено

$$
\left\|B_{j}\right\|=\sup _{i} \sum_{s=1}^{\infty}\left|b_{i s}^{j}\right|,\|\Delta(t)\|_{0}=\sup _{i} \sum_{s=1}^{\infty} \max _{t}\left|a_{i s}(t)\right|
$$

Очевидно, при условиях $1-3$ существует единственное управление (μ_{1}, μ_{2}) такое, что система уравнении

$$
\begin{gather*}
\frac{d x}{d t}=\varepsilon A(t) x-\mu_{1}, t \neq t_{j} \\
\left.\Delta x\right|_{t \neq t_{j}}=\varepsilon B_{j} x\left(t_{j}-0\right)-\mu_{2} \tag{12}
\end{gather*}
$$

имеет T-периодическое решение $x\left(t, \tau, x_{0}\right) \in D^{*}$ такое, что $x\left(\tau, \tau, x_{0}\right)=x_{0} \in D_{f}$, причем

$$
\mu_{1}=\frac{\varepsilon}{T} \int_{\tau}^{\tau+t} A(\sigma) x d \sigma, \quad \mu_{2}=\frac{\varepsilon}{p T} \sum_{\tau<t_{j}<\tau+T} B_{j} x\left(t_{j}-0\right) .
$$

Системе уравнений (11) соответствует укороченная (конечномерная) система уравнений

$$
\begin{align*}
& \frac{d^{(n)}}{d t}=\varepsilon \stackrel{(n)}{A}(t) \stackrel{(n)}{x}, t \neq t_{j} \\
& \left.\Delta x\right|_{t=t_{j}}=\varepsilon \stackrel{(n)}{B_{j}} \stackrel{(n)}{x}\left(t_{j}-0\right) \tag{13}
\end{align*}
$$

где $\stackrel{(n)}{A}(t)=\left[a_{i s}(t)\right]_{i, s=1}^{n} \stackrel{(n)}{B_{j}}=\left[b_{i s}^{(j)}(t)\right]_{i, s=1}^{n}$.
Для нее, естественно, при условиях $1-3$, также существует единственное управление $\left(\begin{array}{c}n \\ \mu_{1}\end{array},\binom{\mu_{2}}{\mu_{2}}\right.$ такое, что решение системы уравнений

$$
\begin{align*}
& \frac{d^{(n)}}{d t}=\varepsilon \stackrel{(n)}{A}(t) \stackrel{(n)}{x}-\stackrel{(n)}{\mu_{1}}, t \neq t_{j} \\
& \left.\Delta x\right|_{t=t_{j}}=\varepsilon \stackrel{(n)}{B_{j}} \stackrel{(n)}{x}\left(t_{j}-0\right)-\stackrel{(n)}{\mu_{2}} \tag{14}
\end{align*}
$$

$\stackrel{(n)}{x}\left(t, \tau, \stackrel{(n)}{x_{0}}\right)$ с начальными значениями $\tau, \stackrel{(n)}{x_{0}}$ будет T-периодическим.
Приведем условия, при которых предельный переход (Δ) в рассматриваемом случае осуществляется в сильном смысле (по норме пространства गノ) и получим оценки для приближения решения $x\left(t, \tau, x_{0}\right)$ функцией $\stackrel{(n)}{x}\left(t, \tau, \stackrel{(n)}{x_{0}}\right)$.

Теорема 2. Пусть система уравнений (11) такова, что выполняются условия $1-3$ и, кроме того, справедливы неравенства

$$
\begin{equation*}
\|A(t)-\stackrel{(n)}{A}(t)\|_{0} \leq \xi(n),\left\|B_{j}-\stackrel{(n)}{B}\right\|_{j} \leq \beta(n), j=\ldots,-1,0,1, \ldots \tag{15}
\end{equation*}
$$

Тогда для решения системы уравнений (12) $x=x\left(t, \tau, x_{0}\right), x_{0}=\left(x_{0}^{1}, x_{0}^{2}, \ldots\right) \in$ $\in D_{f}$ такого, что $\left\|\left(0, \ldots, 0, \stackrel{(n+1)}{x_{0}}, \stackrel{(n+2)}{x_{0}}, \ldots\right)\right\| \leq \eta(n) \quad$ справедлива оценка $\|x-\stackrel{(n)}{x}\| \leq P \alpha(n)$, где $\quad P=\mathrm{const}<\infty, \alpha(n)=\max \{\eta(n), \xi(n), \beta(n)\}$. Если $\alpha(n) \rightarrow 0$ при $n \rightarrow \infty$, то предельный переход (Δ) осуществляется в сильном смысле.

Доказательство. Заметим сначала, что из условий (15) следуют оценки

$$
\sum_{s=n+1}^{\infty} \max _{t}\left|a_{i s}(t)\right| \leq \xi(n), \sum_{s=n+1}^{\infty}\left|\dot{b}_{i s}^{j}\right| \leq \beta(n), i=1,2, \ldots ; j=\ldots,-1,0,1, \ldots,
$$

приводящие к выполнению усиленных условий Коши - Липшица для векторных функций $A(t) x$ и $B_{j} x\left(t_{j}-0\right)$ при $\alpha(n) \rightarrow 0, n \rightarrow \infty$.

С учетом условий $1-3$ из изложенного выше вытекает справедливость представления (Δ).

Напомним, что при $x_{0} \in D_{f}$ как решение $x\left(t, \tau, x_{0}\right)$, так и решение $\stackrel{(n)}{x}\left(t, \tau, \stackrel{(n)}{x_{0}}\right)$ ограничены по норме постоянной $R, t \in[\tau, \tau+T]$.

Учитывая представление (5), получаем неравенство

$$
\begin{align*}
\|x-\stackrel{(n)}{x}\| & \leq\left\|x_{0}-\stackrel{(n)}{x_{0}}\right\|+\int_{\tau}^{t}\left[\varepsilon\|A(\sigma) x-\stackrel{(n)}{A(\sigma)} \stackrel{(n)}{x}\|+\left\|\mu_{1}-\stackrel{(n)}{\mu}\right\|\right] d \sigma+ \\
& +\sum_{\tau<t_{j}<t}\left[\varepsilon\left\|B_{j} x\left(t_{j}-0\right)-\stackrel{(n)}{B_{j}} \stackrel{(n)}{x}\left(t_{j}-0\right)\right\|+\left\|\mu_{2}-\stackrel{(n)}{\mu}\right\|\right] . \tag{18}
\end{align*}
$$

Из соотношений

$$
\begin{gathered}
\|A(\sigma) x-\stackrel{(n)}{A(\sigma)} \stackrel{(n)}{x}\| \leq M\|x-\stackrel{(n)}{x}\|+R \xi(n) \\
\left\|B_{j} x\left(t_{j}-0\right)-\stackrel{(n)}{B_{j}} \stackrel{(n)}{x}\left(t_{j}-0\right)\right\| \leq M\|x-\stackrel{(n)}{x}\|+R \beta(n)
\end{gathered}
$$

следуют оценки

$$
\begin{gathered}
\left\|\mu_{1}-\stackrel{(n)}{\mu_{1}}\right\| \leq \frac{\varepsilon}{T} \int_{\tau_{\tau}}^{\tau+T}\|A(\sigma) x-\stackrel{(n)}{A(\sigma)} \stackrel{(n)}{x}\| d \sigma \leq \varepsilon R \xi(n)+\varepsilon M\|x-\stackrel{(n)}{x}\|_{0}, \\
\left\|\mu_{2}-\stackrel{(n)}{\mu}\right\| \leq \frac{\varepsilon}{p T} \sum_{\tau<t_{j}<\tau+T}\left\|B_{j} x\left(t_{j}-0\right)-\stackrel{(n)}{B_{j}} \stackrel{(n)}{x}\left(t_{j}-0\right)\right\| \leq \\
\leq \varepsilon b M / p T\|x-\stackrel{(n)}{x}\|_{0}+\varepsilon b R / p T \beta(n) .
\end{gathered}
$$

Тогда из непавенства (16) получаем

$$
\begin{aligned}
& \| x-\stackrel{(n)}{x}\left\|_{0} \leq\right\| x_{0}-\stackrel{(n)}{x_{0}} \|_{0}+2 \int_{\tau}^{t}\left[\varepsilon M\|x-\stackrel{(n)}{x}\|_{0}+\varepsilon \xi(n) R\right] d \sigma+ \\
&+\sum_{\tau<t_{j}<t}\left[\varepsilon M\|x-\stackrel{(n)}{x}\|_{0}+\varepsilon R \beta(n)+\frac{\varepsilon b M}{p T}\|x-\stackrel{(n)}{x}\|_{0}+\right. \\
&\left.\quad+\frac{\varepsilon b R}{p T} \beta(n)\right] \leq\left[1+2 \varepsilon R T+\varepsilon R b\left(1+\frac{b}{p T}\right)\right] \alpha(n)+ \\
& \quad+\int_{\tau}^{t} 2 \varepsilon M\|x-\stackrel{(n)}{x}\|_{0} d \sigma+\sum_{\tau<t_{j}<t} \varepsilon M\left(1+\frac{b}{p T}\right)\|x-\stackrel{(n)}{x}\|_{0}
\end{aligned}
$$

Воспользовавшись леммой 2.1 из [2] будем иметь оценку $\|x-\stackrel{(n)}{x}\| \leq P \alpha(n)$, где

$$
P=[1+2 \varepsilon R T+\varepsilon R b(1+b / p T)](\varepsilon M(1+b / p T))^{b} e^{2 \varepsilon M T}=\mathrm{const}<\infty,
$$

что и требовалось доказать.
Заметим в заключение, что если требуется найти решение $x(t)$ системы уравнений (12) с точностью до δ, то следует выбрать укороченную до n-го порядка систему (13), где n подчиняется условию

$$
\alpha(n) \leq \delta_{1} / P, 0<\delta_{1} \leq \delta
$$

Затем, воспользовавшись оценкой из следствия 1 работы [1], надо провести такое число шагов m итерационного процеса, при котором выполняется неравенство

$$
\|\stackrel{(n)}{x}-\stackrel{(n)}{x}\|<\delta_{2}, \quad \delta_{1}+\delta_{2}=\delta,
$$

где $\stackrel{(n)}{\boldsymbol{x}_{m}}(t)$ определяются рекуррентным соотношением (7) из [1]. Этот процесс вполне реализуем на ЭВМ и является одной из модификаций численно-аналитического метода А. М. Самойленко [3]. Кроме того, следует решить задачу оптимизации процесса, состоящую в оптимальном выборе постоянных δ_{1} и δ_{2}.

1. Теплинский Ю. В., Цигановский Н. С. Об одной периодической задаче управления для дифференциальных уравнений с импульсами в пространстве ограниченных числовых последовательностей // Укр. мат. журн. - 1990. - 42, №2. - С. 271-275.
2. Самойленко А. М., Перестюк Н. А. Дифференциальные уравнения с импульсным воздействием. - Киев: Вища шк., 1987. - 287 с.
3. Самойленко А. М., Ронто Н. И. Численно-аналитические методы исследования периодических решений. - Киев: Вища шк., 1976. - 180 с.

Получено 16.01.91

