А. А. Тертерян, канд. физ.-мат. наук (НИИ математики Воронеж. ун-та)

ПОЗИТИВНЫЕ РАЗНОСТНЫЕ ОПЕРАТОРЫ ЛЮБОГО НАПЕРЕД ЗАДАННОГО ПОРЯДКА АППРОКСИМАЦИИ ДЛЯ ВТОРОЙ ПРОИЗВОДНОЙ

Изучаются разностные операторы, построенные методом блочной аппроксимации для дифференциального оператора $-d^{2} / d t^{2}$ с однородными первыми краевыми условиями. Для операторов любого порядка аппроксимации устанавливается своиство позитивности.

Вивчаються різницеві оператори, побудовані методом блочної апроксимації для диференціального оператора $-d^{2} / d t^{2}$ з однорідними першими крайовими умовами. Для операторів довільного порядку апроксимації встановлюеться властивість позитивності.

1. Введение. Линейный оператор A с плотной в банаховом пространстве E областью определения называется позитивным [1], если при $z \geq 0$ существуют ограниченные обратные операторы $(A+z I)^{-1}$, удовлетворяющие оценке

$$
\begin{equation*}
\left\|(A+z I)^{-1}\right\|_{E \rightarrow E} \leq \frac{M}{1+z}, z \geq 0 \tag{1}
\end{equation*}
$$

Позитивность является достаточно "приятным" свойством. Так, для позитивных операторов опеределены дробные степени, квадратный корень из позитивного оператора A порождает аналитическую полугруппу $\exp \left(-t A^{1 / 2}\right)$ и т.д. Поэтому установление позитивности конкретных операторов является важной задачей.

Пусть C_{0} - банахово пространство непрерывных на $[0,1]$ функций $u(t)$, удовлетворяющих краевым условиям $u(0)=u(1)=0$, с обычной равномерной нормой. Известно, что позитивным в этом пространстве является оператор B, определенный формулой

$$
B u=-\frac{d^{2} u}{d t^{2}}
$$

на дважды непрерывно дифференцируемых $u(t)$ с $u^{\prime \prime}(0)=u^{\prime \prime}(1)=0$. Тем же свойством обладает и простейший разностный аналог оператора B - оператор B^{τ}, действующий по правилу

$$
\left(B^{\tau} u^{\tau}\right)_{n}=-\frac{u_{n-1}^{\tau}-2 u_{n}^{\tau}+u_{n+1}^{\tau}}{\tau^{2}}, n=1, \ldots, N, \tau=(N+1)^{-1}
$$

в пространстве C_{0}^{τ} сеточных функций $u^{\tau}=\left\{u_{n}^{\tau}\right\}_{n=1}^{N}$, доопределенных нулями при $n=0$ и $n=N+1$, с равномерной нормой

$$
\left\|u^{\tau}\right\|_{C_{0}^{\tau}}=\max \left\{\left|u_{n}^{\tau}\right|, 1 \leq n \leq \tau^{-1}-1\right\} .
$$

Рассматривая функции Грина резольвент операторов B и B^{τ}, можно легко показатъ, что они позитивны с одной и той же константой $M=5 / 4$ в неравенстве (1). Отметим, что при изучении разностных операторов существенным является требование независимости константы от шага сетки τ.
2. Блочная аппроксимация. Целью настоящей работы является доказательство позитивности разностных операторов специального класса, построенных методом блочной аппроксимации [2] с любым наперед заданным порядком

относительно шага τ. Применительно к рассматриваемой задаче метод заключается в циклическом использовании набора из k различных аппроксимаций второй производной вида

$$
v^{\prime \prime}(t+s \tau)=\frac{1}{\tau^{2}} \sum_{j=0}^{k+1} \beta_{s, j}(k) v(t+j \tau)+O\left(\tau^{k}\right), s=1, \ldots, k
$$

где k - требуемый порядок аппроксимации (произвольный, но фиксированный). Легко видетъ, что эти формулы одозначно определяют набор коэффициентов $\left\{\beta_{s, j}(k)\right\}_{s=1}^{k=0}$ как решение системы уравнений. $_{k+1}$.

$$
\begin{align*}
& \sum_{j=0}^{k+1}(j-s)^{l} \beta_{s, j}(k)=0, l=0,1, \\
& \sum_{\substack{k+1}}^{k+1}(j-s)^{2} \beta_{s, j}(k)=2, \tag{2}\\
& \sum_{j=0}^{k+1}(j-s)^{l} \beta_{s, j}(k)=0, l=3, \ldots, k+1, \\
& s=1, \ldots, k . .
\end{align*}
$$

Оператор $B^{\tau, k}$ в пространстве C_{0}^{τ} задается формулами

$$
\begin{gather*}
B^{\tau \cdot k} v^{\tau}=w^{\tau}, v^{\tau}=\left\{v_{i}^{\tau}\right\}_{i=1}^{N k}, w^{\tau}=\left\{w_{i}^{\tau}\right\}_{i=1}^{N k} \\
w_{k n+s}^{\tau}=-\frac{1}{\tau^{2}} \sum_{j=0}^{k+1} \beta_{s, j}(k) v_{k n+j}^{\tau}, s=1, \ldots, k, n=0,1, \ldots, N-1, \tau=(N k+1)^{-1} . \tag{3}
\end{gather*}
$$

Из (2) следует, что $B^{\tau, k}$ является аппроксимацией оператора B порядка $O\left(\tau^{k}\right)$ в следующем смысле: для всякой достаточно гладкой на $[0,1]$ фуюкции $v(t)$ из области определения оператора B справедливо асимптотическое равенство

$$
\left\|B^{\tau, k}[v]^{\tau}-[B v]^{\tau}\right\|_{C_{0}^{\tau}}=O\left(\tau^{k}\right)
$$

где $[\cdot]^{\tau}$ - операция проектирования на сетку, ставящая в соответствие всякой непрерывной функции $u(t)$ сеточную функцию $[u]^{\tau}=\{\dot{u}(i \tau)\}_{i=1}^{N k}$ из $C_{0}^{\tau} \quad(\tau=$ $\left.=(N k+1)^{-1}\right)$.
3. Преобразование уравнений. Резольвентное уравнение

$$
B^{\tau, k} u^{\tau}+z u^{\tau}=f^{\tau}
$$

в пространстве C_{0}^{τ} фактически представляет собой систему

$$
\begin{gather*}
-\frac{1}{\tau^{2}} \sum_{j=0}^{k+1} \beta_{s, j}(k) u_{k n+j}^{\tau}+z u_{k n+s}^{\tau}=f_{k n+s}^{\tau}, \tag{4}\\
s=1, \ldots, k, n=0,1, \ldots, N-1 \\
u_{0}^{\tau}=u_{N k+1}^{\tau}=0
\end{gather*}
$$

которая содержит, благодаря блочной структуре оператора $B^{\tau, k}, N$ "стандартных" подсистем вида

$$
\begin{equation*}
-\sum_{j=0}^{k+1} \beta_{s, j}(k) v_{j}+\lambda v_{s}=\varphi_{s}, s=1, \ldots, k \tag{5}
\end{equation*}
$$

с $\lambda=z \tau^{2}$. Если соответсвующий определитель отличен от нуля, то каждую подсистему можно разрешить относительно неизвестных v_{1}, \ldots, v_{k} и получить формулы

$$
v_{s}=W_{s}(k, \lambda) v_{0}+V_{s}(k, \lambda) v_{k+1}+\sum_{j=1}^{k} \Phi_{s, j}(k, \lambda) \varphi_{j}, s=1, \ldots, k,
$$

где $W_{s}(k, \lambda), V_{s}(k, \lambda), \Phi_{s, j}(k, \lambda)$ - правильные дробно-рациональные функции от λ с одним и.тем же знаменателем степени k и различными числителями степени не выше $k-1$. Эти функции можно выразить через определители по правилу Крамера, но, по-видимому, такие выражения непригодны для дальнейшего исследования.

Для получения более удобных выражений воспользуемся следующими соображениями. Установим взаимно-однозначное соответствие между числовыми наборами $\left\{v_{j}\right\}_{j=0}^{k+1}$ и многочленами $v(t)$ степіени не выше $k+1$ посредством равенств $v(j)=v_{j}, j=0,1, \ldots, k+1$. При этом система (5) с $\varphi_{s}=0, s=1, \ldots, k$, сводится к уравнениям

$$
\begin{equation*}
-v^{\prime \prime}(s)+\lambda v(s)=0, s=1, \ldots, k \tag{б}
\end{equation*}
$$

поскольку из (2) легко заключить, что для всякого многочлена степени не выше $k+1$

$$
\sum_{j=0}^{k+1} \beta_{s, j}(k) v(j)=v^{\prime \prime}(s), s=1, \ldots, k .
$$

В случае $\lambda=0$ из (6) следует формула

$$
\begin{equation*}
v(t)=\frac{k+1-t}{k+1} v(0)+\frac{t}{k+1} v(k+1), \tag{7}
\end{equation*}
$$

а при $\lambda \neq 0$ можно сделать вывод, что при некоторых константах a и b

$$
-v^{\prime \prime}(t)+\lambda v(t)=a \omega_{k}(t)+b \omega_{k+1}(t)
$$

тождественно, где $\omega_{p}(t)=(t-1)(t-2) \ldots(t-p)$. Решая получившееся дифференциальное уравнение в классе многочленов и выражая a и b через $v(0)$ и $v(k+1)$, получаем

$$
\begin{equation*}
v(t)=\frac{G_{k}(\lambda ; t)}{H_{k}(\lambda ; k+1)} v(0)+\frac{H_{k}(\lambda ; t)}{H_{k}(\lambda ; k+1)} v(k+1), \tag{8}
\end{equation*}
$$

где

$$
\begin{gathered}
G_{k}(\lambda ; t)=\sum_{i=0}^{\infty} \lambda^{-i-1} \omega_{k}^{(2 i)}(t) \sum_{i=0}^{\infty} \lambda^{-i-1} \omega_{k+1}^{(2 i)}(k+1)-\sum_{i=0}^{\infty} \lambda^{-i-1} \omega_{k}^{(2 i)}(k+1) \sum_{i=0}^{\infty} \lambda^{-i-1} \omega_{k+1}^{(2 i)}(t), \\
H_{k}(\lambda ; t)=\sum_{i=0}^{\infty} \lambda^{-i-1} \omega_{k}^{(2 i)}(0) \sum_{i=0}^{\infty} \lambda^{-i-1} \omega_{k+1}^{(2 i)}(t)-\sum_{i=0}^{\infty} \lambda^{-i-1} \omega_{k}^{(2 i)}(t) \sum_{i=0}^{\infty} \lambda^{-i-1} \omega_{k+1}^{(2 i)}(0) .
\end{gathered}
$$

Тождественные преобразования с учетом равенств

$$
\begin{equation*}
\omega_{p}^{(j)}(p+1-t)=(-1)^{p-j} \omega_{p}^{(j)}(t), \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\omega_{p+1}^{(j)}(t+1)=\omega_{p+1}^{(j)}(t)+(p+1) \omega_{p}^{(j)}(t) \tag{10}
\end{equation*}
$$

приводят к заключению, что

$$
H_{k}(\lambda ; k+1-t)=G_{k}(\lambda ; t),
$$

и формула (8) упрощается:

$$
\begin{equation*}
v(t)=\frac{R_{k}(\lambda ; k+1-t)}{R_{k}(\lambda ; k+1)} v(0)+\frac{R_{k}(\lambda ; t)}{R_{k}(\lambda ; k+1)} v(k+1), \tag{11}
\end{equation*}
$$

где $R_{k}(\lambda ; t)$-многочлен степени k по λ и степени $k+1$ по t :

$$
\begin{gather*}
R_{k}(\lambda ; t)=\sum_{n=0}^{k} \lambda^{k-n} Q_{k, n}(t) \tag{12}\\
Q_{k, n}(t)=\sum_{i+j=n}\left[\omega_{k+1}^{(2 i)}(k+2) \omega_{k}^{(2 j)}(t)+\omega_{k+1}^{(2 i)}(t) \omega_{k}^{(2 j)}(k+1)\right] \tag{13}
\end{gather*}
$$

Из расположения корней многочленов $\omega_{k}(t)$ и $\omega_{k+1}(t)$ следует, что все величины $Q_{k, n}(k+1)$ положительны, поэтому знаменатели в формуле (11) не обращаются в нуль при $\lambda \geq 0$. Кроме того, легко видеть, что при $\lambda=0$ фомула (11) совпадает с (7), и мы получаем следующее утверждение.

Теорема 1. При $z \geq 0$ система разностных уравнений (4) может быть приведена к эквивалентной системе

$$
\begin{gather*}
u_{k n+s}^{\tau}=V_{k+1-s}(k, \lambda) u_{k n}^{\tau}+V_{s}(k, \lambda) u_{k n+k+1}^{\tau}+\tau^{2} \sum_{j=1}^{k} \Phi_{s, j}(k, \lambda) f_{k n+j}^{\tau} \tag{14}\\
s=1, \ldots, k, n=0,1, \ldots, N-1 \\
u_{0}^{\tau}=u_{N k+1}^{\tau}=0
\end{gather*}
$$

где $V_{s}(k, \lambda)$ и $\Phi_{s, j}(k, \lambda)$ - правильные дробно-рациональные функции от $\lambda=\tau^{2} z$ содним и тем же положительным ($п р и ~ z \geq 0$) знаменателем, причем

$$
\begin{equation*}
V_{s}(k, \lambda)=\frac{R_{k}(\lambda ; s)}{R_{k}(\lambda ; k+1)}, s=1, \ldots, k, \tag{15}
\end{equation*}
$$

где многочлен $R_{k}(\lambda ; t)$ от двух переменных λ, t определяется формулами (12), (13).

4. Вспомогательные неравенства.

Лемма 1. При любом k для многочленов (13) справедливы неравенства

$$
\begin{equation*}
Q_{k, n}(k+1)-Q_{k, n}(k)-\left|Q_{k, n}(1)\right|>0, n=0,1, \ldots, k-1 . \tag{16}
\end{equation*}
$$

Доказательство. Заметим, прежде всего, что из расположения корней многочленов $\omega_{k}(t)$ и $\omega_{k+1}(t)$ видно; что величины $Q_{k, n}(k+1)$ положительны при $0 \leq n \leq k$, а $Q_{k, n}(k)$ - при $1 \leq n \leq k$; величина $Q_{k, 0}(k)=0$. Перепишем формулу (13) в симметричном виде:

$$
Q_{k, n}(t)=\sum_{i+j=n}\left[\frac{\omega_{k+1}^{(2 i)}(k+2) \omega_{k}^{(2 j)}(t)+\omega_{k+1}^{(2 j)}(k+2) \omega_{k}^{(2 i)}(t)}{2}+\right.
$$

$$
\left.+\frac{\omega_{k+1}^{(2 i)}(t) \omega_{k}^{(2 j)}(k+1)+\omega_{k+1}^{(2 j)}(t) \omega_{k}^{(2 i)}(k+1)}{2}\right] .
$$

Очевидно,

$$
\begin{equation*}
Q_{k, n}(k+1)-Q_{k, n}(k)-\left|Q_{k, n}(1)\right| \geq \sum_{i+j=n} q_{k, n}^{i j}, \tag{17}
\end{equation*}
$$

где с учетом (9)

$$
\begin{align*}
2 q_{k, n}^{i, j}= & {\left[\omega_{k+1}^{(2 i)}(k+2) \omega_{k}^{(2 j)}(k+1)+\omega_{k+1}^{(2 j)}(k+2) \omega_{k}^{(2 i)}(k+1)\right]+} \\
+ & {\left[\omega_{k+1}^{(2 i)}(k+1) \omega_{k}^{(2 j)}(k+1)+\omega_{k+1}^{(2 j)}(k+1) \omega_{k}^{(2 i)}(k+1)\right]-} \\
& -\left[\omega_{k+1}^{(2 i)}(k+2) \omega_{k}^{(2 j)}(k)+\omega_{k+1}^{(2 j)}(k+2) \omega_{k}^{(2 i)}(k)\right]- \\
& -\left[\omega_{k+1}^{(2 i)}(k) \omega_{k}^{(2 j)}(k+1)+\omega_{k+1}^{(2 j)}(k) \omega_{k}^{(2 i)}(k+1)\right]- \\
- & -\left[\left[\omega_{k+1}^{(2 i)}(k+2) \omega_{k}^{(2 j)}(k)+\omega_{k+1}^{(2 j)}(k+2) \omega_{k}^{(2 i)}(k)\right]-\right. \\
- & {\left[\omega_{k+1}^{(2 i)}(k+1) \omega_{k}^{(2 j)}(k+1)+\omega_{k+1}^{(2 j)}(k+1) \omega_{k}^{(2 i)}(k+1)\right] \mid . } \tag{18}
\end{align*}
$$

Если выражение под знаком модуля неотрицательно, то, группируя первое слагаемое с третьим, второе с четвертым и применяя к пятому (10), получаем

$$
\begin{gathered}
2 q_{k, n}^{i, j}=\left\{\omega_{k+1}^{(2 i)}(k+2)\left[\omega_{k}^{(2 j)}(k+1)-\omega_{k}^{(2 j)}(k)\right]+\right. \\
\left.+\omega_{k+1}^{(2 j)}(k+2)\left[\omega_{k}^{(2 i)}(k+1)-\omega_{k}^{(2 i)}(k)\right]\right\}+ \\
+\left\{\omega_{k+1}^{(2 i)}(k+1)\left[\omega_{k}^{(2 j)}(k+1)-\omega_{k}^{(2 j)}(k)\right]+\omega_{k+1}^{(2 j)}(k+1)\left[\omega_{k}^{(2 i)}(k+1)-\omega_{k}^{(2 i)}(k)\right]\right\}+ \\
+ \\
+\left\{\omega_{k+1}^{(2 i)}(k+1) \omega_{k}^{(2 j)}(k)+\omega_{k+1}^{(2 j)}(k+1) \omega_{k}^{(2 i)}(k)\right\}- \\
-\left\{\omega_{k+1}^{(2 i)}(k) \omega_{k}^{(2 j)}(k+1)+\omega_{k+1}^{(2 j)}(k) \omega_{k}^{(2 i)}(k+1)\right\}- \\
-\left\{\left[\omega_{k+1}^{(2 i)}(k+1)+(k+1) \omega_{k}^{(2 i)}(k+1)\right] \omega_{k}^{(2 j)}(k)+\right. \\
\left.+\left[\omega_{k+1}^{(2 j)}(k+1)+(k+1) \omega_{k}^{(2 j)}(k+1)\right] \omega_{k}^{(2 i)}(k)\right\}+ \\
+\left\{\omega_{k+1}^{(2 i)}(k+1) \omega_{k}^{(2 j)}(k+1)+\omega_{k+1}^{(2 j)}(k+1) \omega_{k}^{(2 i)}(k+1)\right\}
\end{gathered}
$$

Теперь группируем первые два слагаемых, применяем $к$ ним формулу (10), третье и пятое слагаемые частично взаимно уничтожаются, а в четвертом меняем порядок:

$$
\begin{gathered}
2 q_{k, n}^{i, j}=k\left\{\left[\omega_{k+1}^{(2 i)}(k+2)+\omega_{k+1}^{(2 i)}(k+1)\right] \omega_{k-1}^{(2 j)}(k)+\right. \\
\left.+\left[\omega_{k+1}^{(2 i)}(k+2)+\omega_{k+1}^{(2 j)}(k+1)\right] \omega_{k-1}^{(2 i)}(k)\right\}- \\
-(k+1)\left\{\omega_{k}^{(2 i)}(k+1) \omega_{k}^{(2 j)}(k)+\omega_{k}^{(2 j)}(k+1) \omega_{k}^{(2 i)}(k)\right\}- \\
-\left\{\omega_{k}^{(2 i)}(k+1) \omega_{k+1}^{(2 j)}(k)+\omega_{k}^{(2 j)}(k+1) \omega_{k+1}^{(2 i)}(k)\right\}+ \\
+\left\{\omega_{k+1}^{(2 i)}(k+1) \omega_{k}^{(2 j)}(k+1)+\omega_{k+1}^{(2 j)}(k+1) \omega_{k}^{(2 i)}(k+1)\right\} .
\end{gathered}
$$

Здесь, наконец, группируем второе и третье слагаемые, применяем формулу (10) и убеждаемся в том, что результат взаимно уничтожается с четвертым

$$
\begin{align*}
& \frac{2}{k} q_{k, n}^{i, j}=\left[\omega_{k+1}^{(2 i)}(k+2)+\omega_{k+1}^{(2 i)}(k+1)\right] \omega_{k-1}^{(2 j)}(k)+ \\
& \quad+\left[\omega_{k+1}^{(2 j)}(k+2)+\omega_{k+1}^{(2 j)}(k+1)\right] \omega_{k-1}^{(2 i)}(k) \tag{19}
\end{align*}
$$

Если же выражение под знаком модуля в (18) отрицателыно, то

$$
\begin{aligned}
2 q_{k, n}^{i, j}= & \omega_{k+1}^{(2 i)}(k+2) \omega_{k}^{(2 j)}(k+1)+\omega_{k+1}^{(2 j)}(k+2) \omega_{k}^{(2 i)}(k+1)- \\
& -\omega_{k+1}^{(2 i)}(k) \omega_{k}^{(2 j)}(k+1)-\omega_{k+1}^{(2 j)}(k) \omega_{k}^{(2 i)}(k+1)
\end{aligned}
$$

Вынося здесь общие множители и дважды пользуясь формулой (10), получаем

$$
\begin{gather*}
\frac{2}{k+1} q_{k, n}^{i, j}=\left[\omega_{k}^{(2 i)}(k+1)+\omega_{k}^{(2 i)}(k)\right] \omega_{k}^{(2 j)}(k+1)+ \\
+\left[\omega_{k}^{(2 j)}(k+1)+\omega_{k}^{(2 j)}(k)\right] \omega_{k}^{(2 i)}(k+1) \tag{20}
\end{gather*}
$$

Легко видеть, что выражения (19) и (20) неотрицательны при любых k, n, i, j. Очевидно, если n четно и $n<k$, то при $2 i=2 j=n$ получаем $i+j=n$, причем выражения (19) и (20) строго положительны. Если же n нечетно и $n<k$, то положим $2 i=n+1,2 j=n-1$; тогда $i+j=n$, и вновь выражения (19) и (20) положительны. Таким образом, среди слагаемых в правой части (17) есть положительные, и мы приходим к неравенству (16).

Следствие. При $\lambda>0$ справедлива оценка

$$
\begin{equation*}
\left|V_{1}(k, \lambda)\right|+\left|V_{k}(k, \lambda)\right|<1 \tag{21}
\end{equation*}
$$

Доказательство. Легко видеть, что $Q_{k, k}(t)=(k+1)!k!t$, поэтому

$$
\begin{equation*}
Q_{k, k}(k+1)-Q_{k, k}(k)-\left|Q_{k, k}(1)\right|=0 . \tag{22}
\end{equation*}
$$

Теперь из (15), (12) и (16) следует

$$
\begin{aligned}
& \left|V_{1}(k, \lambda)\right|+\left|V_{k}(k, \lambda)\right|=\frac{\left|R_{k}(\lambda ; 1)\right|+\left|R_{k}(\lambda ; k)\right|}{\left|R_{k}(\lambda ; k+1)\right|} \leq \\
& \leq \frac{\sum_{n=0}^{k} \lambda^{k-n}\left(\left|Q_{k, n}(1)\right|+Q_{k, n}(k)\right)}{\sum_{n=0}^{k} \lambda^{k-n} Q_{k, n}(k+1)}<1,
\end{aligned}
$$

что и требовалось доказать.

5. Позитивность.

Лемма 2. При $z>0$ оператор $\left(B^{\tau, k}+z I\right)^{-1}$ суцествует и удовлетворяет оценке

$$
\begin{equation*}
\left\|\left(B^{\tau, k}+z I\right)^{-1}\right\|_{C_{0}^{\tau} \rightarrow C_{0}^{\tau}} \leq \frac{M_{1}(k)}{z}, z>0 \tag{23}
\end{equation*}
$$

сконстантой, зависящей от k, но не от $z \quad u \tau$.
Доказательство. Обозначим

$$
\text { III } u^{\tau} \text { III }=\max _{0 \leq n \leq N}\left\{\left|u_{k n}^{\tau}\right|,\left|u_{k n+1}^{\tau}\right|\right\} .
$$

Из (14) следует

$$
\left|u_{k n+1}^{\tau}\right| \leq\left(\left|V_{1}(k, \lambda)\right|+\left|V_{k}(k, \lambda)\right|\right)\left\|u^{\tau}\right\| I+
$$

$$
\begin{aligned}
& +\tau^{2}\left(\sum_{j=1}^{k}\left|\Phi_{1, j}(k, \lambda)\right|\right)\left\|f^{\tau}\right\|_{C_{0}^{\tau}}, n=0,1, \ldots, N-1, \\
& +\left|u_{k n+k}^{\tau}\right| \leq\left(\left|V_{1}(k, \lambda)\right|+\left|V_{k}(k, \lambda)\right|\right)\left\|u^{\tau}\right\| I+ \\
& +\tau^{2}\left(\sum_{j=1}^{k}\left|\Phi_{k, j}(k, \lambda)\right|\right)\left\|f^{\tau}\right\|_{C_{0}^{\tau}}, n=0,1, \ldots, N-1,
\end{aligned}
$$

поэтому с учетом (21)

$$
\text { III } u^{\tau} \text { III } \leq \tau^{2} \frac{\max \left\{\sum_{j=1}^{k}\left|\Phi_{1, j}(k, \lambda)\right|, \sum_{j=1}^{k}\left|\Phi_{k, j}(k, \lambda)\right|\right\}}{1-\left|V_{1}(k, \lambda)\right|-\left|V_{k}(k, \lambda)\right|}\left\|f^{\tau}\right\|_{C_{0}^{\tau}}
$$

Поскольку $\Phi_{s, j}(k, \lambda)$-пправильные дробно-рациональные функции со знаменателем $R_{k}(\lambda ; k+1)$, справедлива оценка

$$
\max \left\{\sum_{j=1}^{k}\left|\Phi_{1, j}(k, \lambda)\right|, \sum_{j=1}^{k}\left|\Phi_{k, j}(k, \lambda)\right|\right\} \leq \frac{P_{k}(\lambda)}{R_{k}(\lambda ; k+1)}
$$

где $P_{k}(\lambda)$ - некоторый многочлен степени $k-1$ с положительными коэффициентами. Следовательно, с учетом (15) и равенства $\lambda=\tau^{2} z$

$$
\text { III } u^{\tau} \| \leq \frac{\lambda P_{k}(\lambda)}{R_{k}(\lambda ; k+1)-\left|R_{k}(\lambda ; 1)\right|-\left|R_{k}(\lambda ; k)\right|} \frac{\left\|f^{\tau}\right\|_{C_{0}^{\tau}}}{z} .
$$

Далее, из (12), леммы 1 и (22) вытекает

$$
R_{k}(\lambda ; k+1)-\left|R_{k}(\lambda ; 1)\right|-\left|R_{k}(\lambda ; k)\right| \geq \lambda T_{k}(\lambda),
$$

где $T_{k}(\lambda)$-многочлен степени $k-1$ с положительными коэффициентами, поэтому

$$
\begin{equation*}
\text { III } u^{\tau} \text { III } \leq \frac{M_{2}(k)}{z}\left\|f^{\tau}\right\|_{C_{0}^{\tau}} \tag{24}
\end{equation*}
$$

Наконец, поскольку $V_{s}(k, \lambda)$ и $\Phi_{s, j}(k, \lambda)$ - правильные дробно-рациональные функции, знаменатель которых - многочлен с положительными коэффициентами, имеем

$$
\left|V_{s}(k, \lambda)\right| \leq M_{3}(k),\left|\tau^{2} \Phi_{s, j}(k, \lambda)\right|=\frac{1}{z}\left|\lambda \Phi_{s, j}(k, \lambda)\right| \leq \frac{M_{4}(k)}{z} .
$$

Отсюда и из (14)

$$
\left\|u^{\tau}\right\|_{C_{0}^{\tau}} \leq 2 M_{3}(k)\left\|u^{\tau}\right\|+\frac{k M_{4}(k)}{z}\left\|f^{\tau}\right\|_{C_{0}^{\tau}},
$$

что вместе с (24) приводит к оценке

$$
\left\|u^{\tau}\right\|_{C_{0}^{\tau}} \leq \frac{M_{1}(k)}{z}\left\|f^{\tau}\right\|_{C_{0}^{\tau}}
$$

с константой $M_{1}(k)=2 M_{2}(k) M_{3}(k)+k M_{4}(k)$, зависящей только от k. Ввиду произвольности f^{τ} и конечномерности пространства C_{0}^{τ} отсюда выгтекает утверждение леммы.

Теорема 2. Оператор $B^{\tau, k}$ позитивен при любом k.
Доказательство. Рассмотрим уравнение $\dot{B}^{\tau, k} u^{\tau}=f^{\tau}$. В развернутом виде оно представляет собой систему (4) с $z=0$ и с помощью равенств (2) легко приводится к виду

$$
\begin{gathered}
-\sum_{j=1}^{k} \gamma_{s, j}(k) \frac{u_{k n+j-1}^{\tau}-2 u_{k n+j}^{\tau}+u_{k n+j+1}^{\tau}}{\tau^{2}}=f_{k n+s}^{\tau}, s=1, \ldots, k, n=0,1, \ldots, N-1, \\
u_{0}^{\tau}=u_{N k+1}^{\tau}=0,
\end{gathered}
$$

где числовые коэффициенты имеют вид

$$
\gamma_{s, j}(k)=\sum_{p=0}^{j-1}(j-p) \beta_{s, p}(k), s, j=1, \ldots, k .
$$

В работе [2] показано, что матрица из этих коэффициентов обратима. Обозначая элементы обратной через $\gamma_{s, j}^{(-1)}(k)$, получаем систему

$$
\begin{gathered}
-\frac{u_{k n+s-1}^{\tau}-2 u_{k n+s}^{\tau}+u_{k n+s+1}^{\tau}}{\tau^{2}}=\sum_{j=1}^{k} \gamma_{s, j}^{(-1)}(k) f_{k n+j}^{\tau}, s=1, \ldots, k, n=0,1, \ldots, N-1, \\
u_{0}^{\tau}=u_{N k+1}^{\tau}=0 .
\end{gathered}
$$

Но это фактически уравнение с оператором B^{τ}, описанным во введении. Обратный оператор легко записывается, и его норма равна $1 / 8$, поэтому

$$
\left\|u^{\tau}\right\|_{C_{0}^{\tau}} \leq M_{5}(k)\left\|f^{\tau}\right\|_{C_{0}^{\tau}},
$$

где

$$
M_{5}(k)=\frac{1}{8} \max _{1 \leq s \leq k} \sum_{j=1}^{k}\left|\gamma_{s, j}^{(-1)}(k)\right| .
$$

Ввиду произвольности f^{τ} отсюда вытекает обратимость оператора $B^{\tau, \kappa}$ и оценка

$$
\left\|\left(B^{\tau, k}\right)^{-1}\right\|_{C_{0}^{\tau} \rightarrow C_{0}^{\tau}} \leq M_{5}(k),
$$

из которой с учетом (23) следует искомое неравенство позитивности вида (1) с константой, зависящей только от k.

Автор выражает благодарность Н. Н. Гудовичу и Л. А. Минину за полезные обсуждения.

1. Ингегральные операторы в пространствах суммируемых функций // М.А.Красносельский, П.П.Забрейко, Е.И.Пустыльник, П.Е.Соболевский.- М.: Наука, 1966.-500 с.
2. Гудович Н. Н. О новом методе построения устойчивых разностных схем любого наперед заданного порядка аппроксимации для линейных обыкновенных дифференциальных уравнений // Журн. вычисл. математики и мат. физики.-1975.-15, №4.-С.931-945.

Получено 13.03.91

