УДК 534.1
А.А. Евтушенко, канд. физ.-мат. наук (Львов. ун-т),
А.K. Прикарпатский, д-р физ.-мат. наук (ИН-т прикл. пробл. механики и математики АН Украины, Львов)

ПАРАМЕТРИЧЕСКИЙ ИНТЕГРО-ИНТЕРПОЛЯЦИОННЫЙ МЕТОД РЕЩЕНИЯ СИНГУЛЯРНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ

Для исследования сингулярных интегральных уравнений с особым ядром типа Коши предлагается использовать параметрический интегро-интерполяционный метод путем замены регулярной части некоторой квадратурной формулой с последующим обращением сингулярного интеграла. Обосновывается вычислительная схема, а также оценка скорости сходимости полученного с ее помощью приближенного решения к точному.
Для дослідження сингулярних інтегральних рівнянь з особливим ядром типу Коші пропонуеться використати параметричний інтегро-інтерполяційний метод шляхом заміни регулярної частини деякою квадратурною формулою з подальшим оберненням сингулярного інтеграла. Обгрунтовується обчислювальна схема, а також оцінка швидкості збіжності одержаного з іі допомогою наближеного розв'язку до точного.

Ряд важных смежных задач теории упругости [1], аэрогидродинамики [2], дифракции волн [3] приводит к решению сингулярных интегральных уравнений вида

$$
\begin{equation*}
K \varphi=f \tag{1}
\end{equation*}
$$

где сингулярный оператор K действует по правилу

$$
(K \varphi)(t)=a(t) \varphi(t)+\frac{b(t)}{\pi i} \int_{L} \frac{\varphi(\tau)}{\tau-t} d \tau+\int_{L} K(t, \tau) \varphi(\tau) d \tau
$$

Здесь L - некоторая простая гладкая кривая в плоскости $C^{1}, t \in L$, функции a, b, f, φ и $K \in H^{(\alpha)}(L)$, где $H^{(\alpha)}(L)$ - пространство комплекснозначых $L \rightarrow C^{1}$ функций, удовлетворяющих условию Гельдера [4] с показателем $\alpha \in[0,1)$. Тогда по теореме Привалова - Племеля [4] оператор K действует из $H^{(\alpha)}(L)$ в $H^{(\alpha)}(L)$, что дает возможность обычным путем [4-6] регуляризировать задачу, сведя ее к интегральному уравнению Фредгольма и тем самым доказав ее разрешимость. Однако для практических целей такой подход неэффективен как из-за большой сложности конечных выражений, так и вследствие трудностей решения самого интегрального уравнения Фредгольма. Поэтому используются приближенные методы решения уравнений вида (1), основанные на теории дискретных уравнений в свертках [5, 7], свойствах ортогональных полиномов [1, 2] и др. В настоящей работе предлагается способ исследования сингулярных интегральных уравнений вида (1) с помощью параметрического интегро-интерполяционного метода [8-10].

Пусть ядро K в операторе (1) равномерно принадлежит по первой переменной классу $H^{(\alpha)}(L)$, а по второй - классу $C^{(s)}(L), s \geq 1$. Сопоставим оператору K интегрального уравнения (1) оператор K_{n} вида

$$
\begin{equation*}
\left(K_{n} \varphi\right)(t)=a(t) \varphi(t)+\frac{b(t)}{\pi i} \int_{L} \frac{\varphi(\tau)}{\tau-t} d \tau+\sum_{j=1}^{n} A_{j}^{(n)} K\left(t, t_{j}\right) \varphi\left(t_{j}\right), \tag{2}
\end{equation*}
$$

где $t_{j} \in L$ и $A_{j}^{(n)} \in C^{1}, j=\overline{1, n} ; n \in Z_{+}$, 一 некоторые величины, выбранные так, чтобы функционал

$$
\begin{equation*}
Q_{n}(g)=\sum_{j=1}^{n} A_{j}^{(n)} g\left(t_{j}\right) \tag{3}
\end{equation*}
$$

для любого полинома $g \in C^{(r)}(L),\left(\left.g^{(r+1)}\right|_{L}=0\right)$ степени $r \geq 0$ совпадал с интегралом $\int_{L} g(\tau) d \tau$. Очевидно, построенный таким образом оператор K_{n} также действует из $H^{(\alpha)}(L)$ в $H^{(\alpha)}(L)$. В силу оценок, полученных в [9, 11] при $n \rightarrow$ $\rightarrow \infty$, справедливо, что $K_{n} \rightarrow K$ в равномерной метрике Гельдера. Таким образом, решая интегральное уравнение $\left(K_{n} \varphi_{n}\right)(t)=f(t)$, получаем равномерное стремление последовательности φ_{n} при $n \rightarrow \infty$ к функции φ, удовлетворяющей исходному уравнению (1). Но согласно [4-6] интегральное уравнение $K_{n} \varphi_{n}$ $=f$ разрешимо явно в виде

$$
\begin{gather*}
\varphi_{n}(t)=-a(t) \sum_{j=1}^{n} A_{j}^{(n)} K\left(t, t_{j}\right) \varphi_{n}\left(t_{j}\right)+a(t) f(t)- \\
-\frac{b(t)}{\pi i} W(t) \int_{L} \frac{f(\tau)}{W(\tau)} \frac{d \tau}{\tau-t}+\frac{b(t)}{\pi i} W(t) \sum_{j=1}^{n} A_{j}^{(n)} \varphi_{n}\left(t_{j}\right) \int_{L} \frac{K\left(\tau, t_{j}\right)}{W(\tau)} \frac{d \tau}{\tau-t}+\sum_{k=1}^{\chi} c_{k} \xi_{k}(t) . \tag{4}
\end{gather*}
$$

Здесь $c_{k} \in C^{1}, \xi_{k}(t), k=\overline{1, \chi}$, - линейно независимые решения соответствующего однородного уравнения с $K \equiv 0$,

$$
\begin{gather*}
W(t)=\left[t^{\chi} \Pi(t)\right]^{-1 / 2} \exp \Gamma(t), \\
\Gamma(t)=\frac{1}{2 \pi i} \int_{L} \frac{d \tau}{\tau-t} \ln \left[\tau^{-x} \Pi(\tau) \frac{a(\tau)-b(\tau)}{a(\tau)+b(\tau)}\right], \\
\Pi(t)=\left(t-z_{0}\right)^{\chi}, z_{0} \in L, \left.\chi=\arg \left[\frac{a(t)-b(t)}{a(t)+b(t)}\right]_{L} \right\rvert\, \geq 0, \tag{5}
\end{gather*}
$$

причем предполагается, что сингулярное уравнение (1) имеет нормальный тип [4-6], т.е. $a(t) \pm b(t) \neq 0 \cdot \forall t \in L$. С учетом формул (4), (5) можно записать решение $\varphi_{n}(t)$ в явном виде, решая предварительно линейную систему алгебраических уравнений относительно значений $\varphi_{n}\left(t_{j}\right), j=\overline{1, n}$. Постоянные $c_{k}, k=$ $=\overline{1, \chi}$, определяются, исходя из дополнительных условий, налагаемых обычно на решение $\varphi(t)$ уравнения (1).

Оценим поточечно решение (4). Пусть для квадратурной формулы (3) выполнены условия, сформулированные выше. Тогда согласно $[9,11]$ существует число $q_{r}>0$ такое, что

$$
\begin{equation*}
\left|Q_{n}(g)-\int_{L} g(\tau) d \tau\right| \leq q_{r} \cdot \omega_{r}\left(\frac{l}{n}, g ; C(L)\right) \tag{6}
\end{equation*}
$$

Здесь $l=\int_{L}|d \tau|, \omega_{r}(t, g ; C(L))$ - модуль непрерывности порядка r для функции $g \in C(L)$ в равномерной метрике. Пользуясь (6), из (4) получаем оценку

$$
\begin{equation*}
\left|\varphi_{n}(t)-\varphi(t)\right| \leq D(t) \omega_{r}\left(\frac{l}{n}, \varphi ; C(L)\right) \tag{7}
\end{equation*}
$$

где $\varphi(t)$ - решение уравнения (1),

$$
D(t)=q_{r}|a(t)| \sup _{L \times L}|K(t, \tau)|+\frac{q_{r}}{\pi}|b(t) W(t)| \sup _{L \times L}|K(t, \tau)|\left|\int_{L} \frac{d \tau}{W(\tau)(\tau-t)}\right| .
$$

Поскольку $\varphi \in H^{(\alpha)}(L)$, то из (7) следует, что $\varphi_{n}(t) \rightarrow \varphi(t)$ при $n \rightarrow \infty$ поточечно, причем, если $\varphi \in C^{(m)}(L)$ и $\varphi^{(m)} \in H^{(\beta)}(L)$, то из (7) получаем $\mid \varphi_{n}(t)-$ $-\varphi(t) \mid=O\left(n^{-(m+\beta)}\right)$, т.е. известный результат работы [11].

Более подробно исследуем случай постоянных коэффициентов a и b в уравненнии (1). Пусть задано интегральное уравнение вида (1), где $a, b \in R^{1}-$ постоянные числа, функции $K(t, \tau)$ и $f(t)$ непрерывны на отрезке $L=[-1,1] \subset$ $\subset R^{1}$. Уравнения такого типа часто встречаются при решении плоских задач упругого равновесия тел с трещинами [12], контактных задач [13] и в других случаях. Для решения такого сингулярного интегрального уравнения воспользуемся формулой (4), где в качестве интерполяционной квадратурной формулы (3) возьмем выражение, соответствующее "методу трапеций" [8]

$$
\begin{equation*}
Q_{n}(g)=\frac{2}{n}\left[\frac{g\left(t_{0}\right)+g\left(t_{n}\right)}{2}+\sum_{j=1}^{n-1} g\left(t_{j}\right)\right] \tag{8}
\end{equation*}
$$

где $t_{j}=-1+2 j / n, j=\overline{1, n}$. Если $g \in C^{(2)}([-1,1])$, то для (7) справедлива оценка

$$
\begin{equation*}
\left|\int_{-1}^{1} g(t) d t-Q_{n}(g)\right| \leq \frac{2}{3 n^{2}} \sup _{t \in[-1,1]}\left|f^{(2)}(t)\right| . \tag{9}
\end{equation*}
$$

Достаточное условие сходимости формулы (8) к интегралу $\int_{-1}^{1} g(t) d t$ имеет вид [11]

$$
\begin{equation*}
\int_{-1}^{1} d \tau\left|Q_{n}(t-\tau)_{+}-\int_{-1}^{1}(t-\tau)_{+} d t\right| \leq \frac{2}{3 n^{2}}, \tag{10}
\end{equation*}
$$

где $(t-\tau)_{+}=(t-\tau)$, если $t \geq \tau$, и 0 , если $t<\tau$. С учетом соотношения (8) находим частное решение интегрального уравнения (1):

$$
\varphi_{n}(t)=-\frac{2 a}{n} \sum_{j=1}^{n-1} K\left(t, t_{j}\right) \varphi_{n}\left(t_{j}\right)-\frac{2 a}{n}\left[\frac{K\left(t, t_{0}\right) \varphi_{n}\left(t_{0}\right)}{2}+\frac{K\left(t, t_{n}\right) \varphi_{n}\left(t_{n}\right)}{2}\right]+
$$

$$
\begin{aligned}
& +a f(t)-\frac{b}{\pi i} W(t) \int_{-1}^{1} \frac{f(\tau)}{W(\tau)} \frac{d \tau}{\tau-t}+\frac{b}{\pi i} W(t) \sum_{j=1}^{n-1} \varphi_{n}\left(t_{j}\right) \int_{-1}^{1} \frac{K\left(\tau, t_{j}\right)}{W(\tau)} \frac{d \tau}{\tau-t}+ \\
& \quad+\frac{b(t)}{\pi i} W(t)\left[\frac{\varphi_{n}\left(t_{0}\right)}{2} \int_{-1}^{1} \frac{K\left(\tau, t_{0}\right)}{W(\tau)} \frac{d \tau}{\tau-t}+\frac{\varphi_{n}\left(t_{n}\right)}{2} \int_{-1}^{1} \frac{K\left(\tau, t_{n}\right)}{W(\tau)} \frac{d \tau}{\tau-t}\right],
\end{aligned}
$$

где

$$
\begin{gathered}
W(t)=(1-t)^{\alpha}(1+t)^{\beta}, \alpha=N-i \omega, \beta=M+i \omega, \\
-(\alpha+\beta)=-(N+M)=1,-1 \leq \operatorname{Re}(\alpha, \beta)<0, W(0)=1, \\
\omega=\frac{1}{2 \pi} \ln \left[\frac{a-i b}{a+i b}\right], N, M \in Z_{+} .
\end{gathered}
$$

Отсюда, на основании оценок (7)-(10), следует, что поточечно на $[-1,1]$ справедливо соотношение

$$
\left|\varphi_{n}(t)-\varphi(t)\right|=O\left(\frac{1}{n^{2}}\right)
$$

Полагая, например, $n=100$, получаем точность приближения решения, достаточную для практических вычислений.

В заключение отметим, что в случае систем сингулярных интегральных уравнений вида (1) из-за неразрешимости в общем случае характеристического уравнения для исходного матричного оператора K эффективность рассмотренного выше интегро-интерполяционного метода будет невелика. Представляется естественным применение этого метода в сочетании с другим, например, методом ортогональных полиномов [1-3], что должно привести как к повышению эффективности получения конечных результатов, так и к уменьшению количества вычислительных алгоритмов при решении исходной задачи.

1. Партон В. З., Перлин П. И. Интегральные уравнения теории упругости.- М.: Наука, 1977.312 c.
2. Белоцерковский С. М., Лифанов И. К. Численные методы в сингулярных интегральных уравнениях.- М.: Наука, 1985.- 256 с.
3. Назариук З. Т. Численное исследование дифракции волн на цилиндрических структурах.Киев: Наук. думка, 1989.- 256 с.
4. Мусхелишвили Н. И. Сингулярные интегральные уравнения.-М.: Гостехиздат, 1962.-599 с.
5. Гахов Ф. Д. Краевые задачи.- М.: Наука, 1977.- 640 с.
6. Векуа Н. П. Системы син улярных интегральных уравнений.- М.: Наука, 1970.- 379 с.
7. Гахов Ф. Д., Черский Ю. И. Уравнения типа свертки.- М.: Наука, 1978.- 295 с.
8. Никольский С. М. Квадратурные формулы.- М.: Наука, 1979.- 254 с.
9. Грилицкий Д. В., Евтуиенко А. А., Прикарпатский А. К. Об оценке квадратуриой формулы на отрезке в классе непрерывных функций и теорема типа Банаха - Штейнгауза // Мат. физика и нелинейн. механика.- 1989.- 45, вып. 11.- С. 10-11.
10. Дробышевич В. И., Дымников В. П., Ривин Г. С. Задачи по вычислительной математике. М.: Наука, 1980.- 144 с.
11. Butzer P. L. The Banach - Steinhays theorem with rates and applikations to various branches of analysis // Int. Ser. Numer. Math.- 1980.-47, №2.- P. 299-331.
12. Саврук М. П. Двумерные задачи упругости для тел с трещинами.- Киев: Наук. думка, 1981.- 324 c.
13. Джонсон $К$. Механика контактного всаимодействия.- М.: Мир, 1989.- 510 c .

Получено 13.09.91

