ДЕЯКІ ГОМОТОПІЧНІ ВЛАСТИВОСТІ ФУНКТОРІВ ЗІ СКІНЧЕННИМИ НОСІЯМИ

Доведено, що нормальні в розумінні Є.В.Щепіна функтори зі скінченними носіями в категоріі компактів $є$ неперервними в топології гомотопічно n-регулярної збіжності К.Куратовського в просторі $L C^{n}$-підмножин метричногокомпакту. Такі функтори зберігають також властивість відображень поліедрів індукувати ізоморфізм гомотопічних груп виміру не більшого за n.

Доказано, что нормальные в смысле Е.В.Щепина функторы с конечными носителями в категории компактов являются непрерывными в топологии гомотопически n-регулярной сходимости К.Куратовского в пространстве $L C^{n}$-подмножеств метрического компакта. Такие функторы сохраняют также свойство отображений полиэдров индуцировать изоморфизм гомотопических групп размерности не больше n.

Поняття функтора зі скінченними носіями, що діє в підкатегоріях категорії топологічних просторів, охоплює багато конструкцій загальної та алгебраїчної топології, топологічної алгебри [1]. На даний час одержано багато результатів про збереження такими функторами класів абсолютних околових ретрактів (екстензорів) та близьких до них класів просторів [2, 3]. Ряд результатів стосується гомотопічних властивостей функторів: О.М.Дранішников [4] та B.M: Басманов [5] довели теореми про збереження функторами класів $L C^{n}$ - та C^{n}-компактів, В.М. Басманов [5] показав, що у деяких випадках функтори можуть підвищувати зв'язність компакта на одиницю.

В доведеннях результатів даної праці, що дають нові гомотопічні властивості функторів, істотно використовуються методи недавно створеної теорії менгерівських многовидів [6,7].

1. Наведемо деякі необхідні означення; детальніше див. [8]. Всі вихідні простори та відображення, якщо не припускається протилежне, беруться з категорії компактів Comp. Коваріантний функтор $F: \operatorname{Comp} \rightarrow$ Comp називається нормальним [8], якщо він неперервний, мономорфний, епіморфний, зберігає вагу, перетини, прообрази, точку та порожню множину. Для нормального функтора F та точки $a \in F X$ множина $\operatorname{supp}(a)=\cap\{A \in \exp X \mid a \in F A \subset F X\}$ називається носієм точки a. Якщо всі такі носії скінченні, то функтор F називається функтором зі скінченними носіями. Клас нормальних функторів зі скінченними носіями позначається $Л \mathcal{F}_{\infty}$.

Для відображення $f: X \rightarrow Y$ нехай $F_{0} X=\left\{a \in F X \mid \operatorname{supp}(a) \subset f^{-1}(y)\right.$ для деякого $y \in Y\}$. Легко бачити, що $F_{0} \in$ ендофунктором у категорії Comp / Y компактів над Y.

Відображення $f: X \rightarrow Y$ називається м'яким відносно пари (A, B) [9], якщо для кожних відображень $\varphi: B \rightarrow X, \psi: A \rightarrow Y$ таких, що $f \circ \varphi=\psi \mid B$, існує відображення $\Phi: A \rightarrow X$ таке, що $f \circ \Phi=\varphi$ і $\Phi \mid B=\varphi$. Відображення f називається n-м'яким, якщо воно м'яке відносно кожної пари (A, B), де A паракомпакт виміру, не більшого за n, а множина B замкнена в A, і називаєтъся n-оборотним, якщо воно м'яке відносно кожної пари (A, \varnothing), де A - паракомпакт виміру, не більшого за n.

Через μ_{n} позначається n-вимірний універсальний компакт Менгера [6], через Q - гільбертів куб.
2. У множині $L C^{n}(X)$ компактних $L C^{n}$-підмножин метричного простору X вводиться топологія гомотопічно n-регулярної збіжності [10]. За означенням послідовність $\left(A_{i}\right)_{i \in \omega}$ в $L C^{n}(X)$ збігається до $A_{\omega} \in L C^{n}(X)$, якщо вона збігається до A_{ω} в метриці Гаусдорфа і $є$ equi- $L C^{n}$, тобто для кожного $\varepsilon>0$ існує $\eta>0$ таке, що для будь-якого відображення $f: S^{k} \rightarrow A_{i}, k \leq n, з \operatorname{diam}\left(f\left(S^{k}\right)\right)<$ $<\eta$ існує продовження $\bar{f}: B^{k+1} \rightarrow A_{i} \quad \operatorname{diam}\left(\bar{f}\left(B^{k+1}\right)\right)<\varepsilon$.

Теорема 1. Нехай $F \in \Uparrow \Im_{\infty}$ i F зберігае клас метризовних ANR-компактів. Тоді відображення $F: L C^{n}(Q) \rightarrow L C^{n}(F Q)$ неперервне.

Доведення. Нехай $\left(A_{i}\right)_{i \in \omega}$ - послідовність в $L C^{n}(Q)$, що збігається до $A_{\omega} \in L C^{n}(Q)$, і $X=\left\{(a, i) \in Q \times(\omega+1) \mid a \in A_{i}\right\}, f=p r_{2} \mid X: X \rightarrow \omega+1$. Тоді відображення f є локально $(n+1)$-м'яким [9]. Нехай $g: Z \rightarrow X-(n+1)$-оборотне відображення, де Z - метричний компакт $\mathrm{i} \operatorname{dim} Z \leq n+1$ [9]. Існує вкладення $j: Z \rightarrow \mu_{n+1} \times(\omega+1)$ таке, що $p r_{2} \circ j=f \circ g$.

Оскільки відображення f локально ($n+1$)-м'яке, то існує компактний окіл $U \supset j(Z)$ в $\mu_{n+1} \times(\omega+1)$ та відображення $r: U \rightarrow X$ таке, що $r \circ j=g$ і $f \circ r=p r_{2} \mid U$. Не зменшуючи загальності, можемо вважати, що існує компактний μ_{n+1}-многовид $M \subset \mu_{n+1}$, для якого $j(Z) \subset(\operatorname{int} M) \times(\omega+1) \subset M \times(\omega+1) \subset$ $\subset U$. Зауважимо, що відображення $r^{\prime}=r l(M \times(\omega+1)) \in(n+1)$-оборотним.

Застосувавши до відображень f, r^{\prime} та $p r_{2}: M \times(\omega+1) \rightarrow \omega+1$ функтор F_{0} (в категорії Comp/($\omega+1$)) та врахувавши факт збереження функтором F властивості ($n+1$)-оборотності [4], одержуємо, що відображення $F_{0} r^{\prime}=F r$ । $\left(F r^{\prime}\right)^{-1}\left(F_{0} X\right) \in(n+1)$-оборотним. Звідси випливає, що відображення $F_{0} f \in$ локально $(n+1)$-м'яким, а отже, послідовність $\left(F A_{i}\right)_{i \in \omega}$ збігається до $F A_{\omega}$ в просторі $L C^{n}(F Q)$. Теорема доведена.
3. Для кожного компактного поліедра X існуе μ_{n+1} - многовид X^{\prime} та $(n+1)$-оборотне поліедрально $(n+1)$-м'яке відображення $\alpha: X^{\prime} \rightarrow X\left(\mu_{n+1}\right.$-резольвента [7]).

Теорема 2. Нехай $F \in$ Ү $_{\infty}$ i F зберігає клас метризовних ANR-компактів. Тоді для кожної μ_{n+1}-резольвенти $\alpha: X^{\prime} \rightarrow X$ компактного поліедра X відображення $F \alpha: F X^{\prime} \rightarrow F X$ індукує ізоморфізм гомотопічних груп виміру, не більшого за n.

Доведення теореми 2 грунтується на методі, запропонованому О.М. Дранішниковим в [4] для доведення збереження функторами класу $L C^{n}$-просторів.

Теорема 3. Нехай $F \in\urcorner \Im_{\infty}$ i F зберігає клас метризовних ANR-компактів. Тоді F зберігає властивість відображень компактних поліедрів індукувати ізоморфізм гомотопічних груп виміру, не більиого за n.

Доведення. Нехай відображення $f: X \rightarrow Y$ компактних поліедрів індукує ізоморфізм гомотопічних груп виміру, не більшого за n, і $\alpha: X^{\prime} \rightarrow X$. $\beta: Y^{\prime} \rightarrow Y-\mu_{n+1}$-резольвенти. Оскільки відображення $\beta \in(n+1)$-оборотним, то існує відображення $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ таке, що $f \circ \alpha=\beta \circ f^{\prime}$. Тоді, очевидно, відоб-

раження $f^{\prime} \mu_{n+1}$-многовидів індукує ізоморфізм гомотопічних груп виміру, не більшого за n. З теореми Бествіни [6] випливає, що у цьому випадку існує відображення $g: Y^{\prime} \rightarrow X^{\prime}$, для якого композиції $g \circ f$ та $f \circ g$ n-гомотопні відповідним тотожнім відображенням (два відображення $h_{0}, h_{1}: A \rightarrow B$ називаються n-гомотопними, якщо гомотопні композиції $h_{0} \circ k$ та $h_{1} \circ k$ для кожного відображення $k: C \rightarrow A$, де $\operatorname{dim} C \leq n$ [11]).

Лема. Кожен нормальний функтор зі скінченними носіями зберігає відношення п-гомотопності відображень.

Доведення легко випливає з властивості збереження такими функторами властивості n-оборотності [4].

Застосувавши до відображеннь $f, f^{\prime}, \alpha, \beta$ та g функтор F та скориставг шись лемою і теоремою 2 , одержуємо, що відображення $F f$ індукує ізоморфізм гомотопічних груп виміру, не більшого за n.

Наслідок. Нехай $F \in 冗 \mathcal{F}_{\infty}$, і F зберігає клас метризовних $A N R$-компактів. Якщо (X, A) - компактна поліедральна пара, для якої $\pi_{i}(X, A)=0$ при $i \leq n$, то $\pi_{i}(F X, F A)=0$ при $i \leq n$.
4. Результати п. 3 можуть бути поширені на функтори вигляду $\lim _{\rightarrow}\left\{F^{(i)}\right\}:$ Сотр ${ }^{\infty} \rightarrow$ Comp $^{\infty}$, де $F^{(i)}$ - нормальний функтор степеня i [1], зо\rightarrow
крема на функтори $\exp ^{\infty}, P^{\infty}$ та ін.
1.Zarichnyi M. M. On covariant topological functors. I // Quest. and Answers in Gen. Topol. - 1990.-8, № 2. - P. $317-369$.
2. Федорчук В. В. О некоторых геометрических свойствах ковариантных функторов // Успехи мат. наук. - 1984. - 39, вып.5. - С. 169-208.
3.Федорчук B. В. Мягкие отображения, многозначные ретракции и функторы // Там же. 1986, - 41, вып.6. - С. 121 - 159.
4. Дранииников А. Н. Ковариантные функторы и экстензоры в размерности $n / /$ Там же. 1985. - 40, вып.6. - С. 133-134.
5.Басманов В. Н. Ковариантные функторы конечных степеней и связность // Докл. АН CCCP.-1984.-279, №6.- C.1289-1293.
6.Bestvina M. Characterizing k-dimensional universal Menger compacta. Mem. AMS. - 1988. № 380. - 110 p.
7. Дранииников А. Н.У ниверсальные менгеровские компакты и универсальные отображения // Мат. сб. - 1986. - 129, № 1. - С. 17-30.
8. Щепин Е. В. Функторы и несчетные степени компактов // Успехи мат. наук. - 1981. - 36, вып.3. - С. 3-62.
9. Дранишников А. Н. Абсолютные экстензоры в размерности n и n-мягкие отображения, повышающие размерность // Там же. - 1984. - 39, вып.5. - С. 55-95.
10.Kuratowski K. Quelques propriétés de l'espace des ensembles $L C^{n} / /$ Bull. Acad. Pol. Sci. Ser. Math. - 1957. - 5, № 10. - P. 967 - 974.
11.Чигооидзе А.Ч. n-шейпы и n-когомотопические группы компактов // Мат. сб. - 1989. - 180, № 3. - C. 322 - 335.

Одержано 29.01.91

