ПРО НУЛІ МНОГОЧЛЕНІВ ВІД ЕЛІПТИЧНИХ ФУНКЦІЙ ЯКОБI

Одержано оцінку кількості нулів функції $F(r)=P(r, \operatorname{sn} r)$, де $P(X, Y) \in \mathbb{C}[X, Y], \operatorname{sn} z$ - еліптична функція Якобі.

Получена оценка количества нулей функции $F(r)=P(r, \operatorname{sn} r)$, где $P(X, Y) \in \mathbb{C}[X, Y], \operatorname{sn} z$ - эллиптическая функция Якоби.

Нехай $\operatorname{sn} z$ - еліптична функція Якобі, 4ω i $2 \omega^{\prime}$ - довільна фіксована пара ї основних періодів.

Теорема 1. Функції z та $\operatorname{sn} z$ алгебраїчно незалежні.
Доведення. Нехай $P(\operatorname{sn} z, z) \equiv 0, P(X, Y) \in \mathbb{C}[X, Y], P \neq 0, P$ - незвідний; a відмінне від полюсів $\operatorname{sn} z$. Оскільки для періоду $4 \omega \operatorname{sn} a=\operatorname{sn}(a+4 n \omega)$, то всі числа $a+4 n \omega \in$ коренями $P(\operatorname{sn} a, z)$. Тому знайдуться різні $n_{1}, n_{2} \in \mathbb{Z}$ такі, що $a+4 n_{1} \omega=a+4 n_{2} \omega$. Але тоді $\omega=0$. Це протиріччя доводить теорему.

Теорема 2. Нехай $P \in \mathbb{C}[X, Y], \operatorname{deg}_{x} P \leq L, \operatorname{deg}_{y} P \leq M, M \geq 1$. Toдi noрядок нуля функції $F(z)=P(z, \operatorname{sn} z)$ не більше $8 M L+4 M+1$.

Доведення. Візьмемо $a \in \mathbb{C}$ - довільне число, відмінне від полюсів $\operatorname{sn} z$. Якщо $L=0$, то $\operatorname{ord}_{a} F(z) \leq 2 M$. Нехай $L \geq 1$. Припустимо, що $\Omega=\operatorname{ord}_{a} F \geq$ $\geq 8 M L+4 M+2$. Тоді

$$
\begin{equation*}
\left.\operatorname{ord}_{a}\left(P_{X}^{\prime}(z, \operatorname{sn} z)\right)^{2}-\left(\operatorname{sn}^{\prime} z P_{Y}^{\prime}(z, \operatorname{sn} z)\right)^{2}\right) \geq \Omega-1 \tag{1}
\end{equation*}
$$

Враховуючи ди**
ぃне рівняння для $\operatorname{sn} z$, одержуємо

$$
\begin{equation*}
\left.r_{X}^{\prime}(X, Y)\right)^{2}-\left(1-Y^{2}\right)\left(1-\kappa^{2} Y^{2}\right)\left(P_{Y}^{\prime}(X, Y)\right)^{2} \tag{2}
\end{equation*}
$$

Нехай $R\left(Y^{\prime \prime \prime}\right.$, , іс -ультант многочленів P і Q. Тоді

$$
\begin{equation*}
\operatorname{deg} R \leq 2 M(2 L+1)<(\Omega-1) / 2 \tag{3}
\end{equation*}
$$

Але $з(1)$, (2) маємо, що a є коренем R кратності не менше $\Omega-1$, що з урахуванням порядку $\operatorname{sn} z$ суперечить (3). Тому $R \equiv 0$.

Нехай P - незвідний многочлен, $A(z)$ - старший коефіцієнт $P(X, \operatorname{sn} z)$. Виберемо в \mathbb{C} відкриту однозв'язну множину U таку, що в $U: 1) A(z) \neq 0$; 2) $P(X, \operatorname{sn} z)$ може мати лише прості корені. Визначимо $g(z)$ з умови $P(g(z), \operatorname{sn} z) \equiv 0$. Тоді

$$
\begin{equation*}
\left(g^{\prime}(z) P_{X}^{\prime}(g(z), \operatorname{sn} z)\right)^{2}-\left(\operatorname{sn}^{\prime} z P_{Y}^{\prime}(g(z), \operatorname{sn} z)\right)^{2}=0 \tag{4}
\end{equation*}
$$

Оскільки $R(y) \equiv 0$ і P - незвідний, то $Q(g(z), \operatorname{sn} z)=0$. Звідси, враховуючи (2) i (4) одержуємо алігебраїнну залежність z і $g(z)$. Оскільки $g(z)$ i sn z алгебраїчно залежні за побудовою, то z i sn z алгебраїчно залежні. Це протиріччя доводить теорему у випадку, коли P - незвідний многочлен. Якщо $P=$ $=P_{1} \ldots P_{n}$, де ${ }^{-} P_{k}$ - незвідні многочлени, то застосовуючи раніше доведене для кожного P_{k}, одержуємо справедливість твердження теореми.

Зауважимо, що подібним шляхом аналогічні результати можна одержати для функцій $\mathrm{cn} z, \operatorname{dn} z$. Для функції $\mathscr{P}(z)$ подібний результат є в [1].

1. Reyssat E. Approximation algebrique de nombres lies aux founctions elliptique et exponentielle // Bul. Soc. math. France. - 108, $N^{\text { }}$ 1. - P. 47-49.

Одержано 06.03.92

