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ITERATIVE SOLUTION OF A NONLINEAR STATIC BEAM EQUATION

ITEPAIIMHUH PO3B’SI30K HEJITHIMHOT O PIBHSIHHSI CTATUYHOI BAJIKH

!
The paper deals with a boundary-value problem for the nonlinear integro-differential equation u”" —m ( / u'® d:c) v =
0

= f(z,u,u’), m(z) > a >0, 0< z < oo, modeling the static state of the Kirchhoff beam. The problem is reduced to a
nonlinear integral equation, which is solved using the Picard iteration method. The convergence of the iteration process is
established and the error estimate is obtained.

l
o C ey . . . 2
PosmismaeTbes KpaifoBa 3amada [ HeJiHifiHOro iHTerpo-amdepenuiansnoro piesauns v’’’ — m( / u’ da:) u o=
0
= f(z,u,v'), m(z) > a >0, 0 < z < 0o, IO MOAEMIOE CTAaTHUHMIi cTaH Gamku Kipxrodda. 3agaua 3somutecs
JI0 HENiHIMHOTO 1HTETrpaJbHOTO PiBHSAHHS, SIKE PO3B’SA3YETHCS 3a JOMOMOTOIO iTepauiiiHoro mMerony Ilikapa. Bcranosneno
301KHICTB L[LOTO ITEPALIfHOTO MPOLECy Ta OTPUMAHO OLIHKY JJIsI TOXUOKH.

1. Statement of the problem. Let us consider the nonlinear beam equation

l

" (z) —m /u’z(x) dr |u"(z) = f(x,u(x),u (x)), =€ (0,1), (1)

0

with the conditions
u(0) =u(l) =0, u”(0) =4"(l) = 0. )

Here, u = u(x) is the displacement function of length [ of the beam subjected to the action of a
force given by the function f(z,u,u’), the function m(z),

m(z) >a>0, 0<z< oo, 3)

describes the type of a relation between stress and strain. Namely, if the function m(z) is linear, this
means that the above relation is consistent with Hooke’s linear law, while otherwise we deal with
material nonlinearities.

The equation (1) is the stationary problem associated with the equation

l
2
Ut + Uggze — M /uggdx Ugy :f(a:,t,u,ux),

0

m(z) > const > 0,

which for the case where m(z) = mg + miz, mg,m; > 0, and f(z,t,u,u,) = 0, was proposed
by Woinowsky-Krieger [10] as a model of deflection of an extensible dynamic beam with hinged
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l
ends. The nonlinear term / ui dx was for the first time used by Kirchhoff [3] who generalized
D’Alembert’s classical linearomodel. Therefore (1) is frequently called a Kirchhoff type equation for
a static beam.

The problem of construction of numerical algorithms and estimation of their accuracy for equa-
tions of type (1) is investigated in [1, 5, 8, 9]. In [4], the existence of a solution of the problem (1),
(2) is proved when the right-hand part of the equation is written in the form ¢(x)f(z,u,u’), where
f€C([0,1] x [0,00) x R) is a nonnegative function and ¢ € C[0, ] is a positive function.

In the present paper, in order to obtain an approximate solution of the problem (1), (2), an
approach is used, which differs from those applied in the above-mentioned references. It consists in
reducing the problem (1), (2) by means of Green’s function to a nonlinear integral equation, to solve
which we use the iterative process. The condition for the convergence of the method is established
and its accuracy is estimated.

The Green’s function method with a further iteration procedure has been applied by us previously
also to a nonlinear problem for the axially symmetric Timoshenko plate [6].

2. Assumptions. Let us assume that besides (3) the function m(z) also satisfies the Lipschitz
condition

}m(zl) — m(zg)‘ <li|zg — 21], 0< 21,29 <00, I1 =const>D0.
Suppose that f(z,u,v) € Lo ((0,1),R,R) and, additionally, that the inequalities
|f (@, u,0)| < o1(2) + o2() [u] + o3(2) [v], 4)
}f(x,UQ,vg) — f(x,ul,m)‘ <lao(x) lug — u1| + l3(z) |[vg — v1], ©)
where
O<z<l, uwvu,v;eR, =12 o1(x) € L2(0,1), o4(x), li(z) € Loo(0,1), i=2,3,
o1(x) > const >0, oi(x) >0, [(x)>0, i=2,3,

are fulfilled.
We impose one more restriction on the beam length [ and the parameters o and o2(z), o3(x)
from the conditions (3) and (4), (5)

T {

o=at (7)1 (Gl + st ) > o. ©

m
Let us assume that there exists a solution of the problem (1), (2) and u € VVO2 ’2(0, l) [2].
3. The method. We will need the Green function for the problem

v"(2) — av”(z) = (),
0<x<l, a=const>0, @)
v(0) =v(l) =0, v"(0) ="(1) = 0.

In order to obtain this function, we split the problem (7) into two problems
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and

v(0) =v(l) =0
Calculations convince us that
w(z) = SR S /mcosh (Va(z —1)) cosh (va&)y(&)de +
~ /asinh (val) )

!
+ /cosh (Vazx) cosh (va(€ —1))i(€) dﬁ) ;

T

T l
o) = 7 ( = vw©e+ [t~ l)w(é)df).

0 T

Substituting the first of these formulas into the second and performing integration by parts, we
obtain

v(w) = i (/ (K1t = 2)¢ + kasinh (Va(x — 1)) sinh (vag) b (¢) ) de +

0

!
+ / (k1z(l — &) + ko sinh (vaz) sinh (va(€ —1))9(€)) df) ,

A
S 2T Vasinh (v/al)

The application of (7) to the problem (1), (2) makes it possible to replace the latter problem by
the integral equation

u(z) = /lG(%f)f(&U(é)vul@)) dg, 0<ux<l, ®)
where 0
o z(x e+ ﬁsmé(ﬁl)smh (Vr(e — 1)) sinh (V7€), 0<é<a<l,
7€ =1+ T (V) sinh (v/72) sinh (V7(€§ = 1)), 0<z <<,
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!
T=m /u'Q(x) dz
0
The equation (8) is solved by the Picard iteration method. After choosing a function ug(z),
0 < a <[, which together with its second derivative vanish for z = 0 and = [, we find subsequent
approximations by the formula

!
um(z)=/Gk<x,5>f(§,Uk<5>,ug<g>>dg, O<a<l, k=01, ©

where "

Gk(x,g):i }(ml)“ﬁsmr}(\/m) sinh (y/7x(z — 1)) sinh (y7t), 0<&<a<l,
Tk f$<§_l)+ﬁsinh(ﬁl) sinh (y/75z) sinh (VA€ — 1)), 0<z <€<l,

l

T =M /uf(m)dw ,
0

and ug(x) is the kth approximation of the solution of the equation (8).
4. The problem for the error. Our aim is to estimate the error of the method, by which we
understand the difference between the approximate and exact solutions

oug(x) = ug(x) —u(z), k=0,1,.... (10)

For this, it is advisable to use not the formula (9), but the system of equalities
!

W (z) —m / W2 (2) dr |1 (2) = (2, up(e) dh(a), (1)
0
wr(0) = upl) =0, ul(0) = (1) = 0, (12)

which follows from (9).
If we subtract the respective equalities in (1) and (2) from (11) and (12), then we get

l l
1
dup'(x) — 2| ™ /u',?_l(m) dr | +m /u’2($) dr | | dui(z) +
0 0

! !
+ |m U/ulgl(x)d:c —-m O/u’Q(x)da: (ufp(z) +u"(z)) | =

= f(:v,uk_l(x),u%,l(x)) - f(x,u(m),u’(x)), (13)
dug(0) = duk(l) =0, su”(0) =6u"(1) =0, k=1,2,.... (14)

We will come back to (13), (14) to estimate the error of the method (9). In meantime we have to
derive several a priori estimates.
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5. Auxiliary inequalities. Let

. ) 1/2
u(x)np(/(fl;(x)) dx) Cp=012 @] =lu@], a5
0

The symbol (-, -) is understood as a scalar product in L2 (0,1).
Lemma 1. The following estimates are true:

)y (16)

l
o @l < L e

o) < £ flute)

respectively, for u(z) € Wol’Q(O, 1) and u(x) € W22(0,1) N Wol’z((), l).
Proof. Indeed, the first estimate of (16) is Friedrich’s inequality (see, e.g., [7, p. 192]). Applying
this inequality and taking into account that

[u(@)[[; = ul@)u' (@)fh — (u(z),u"(z)) = —(u(z),v"(2)) < |[u@)|] |u)],

we get the second inequality of (16).
Lemma 2. The inequality

I et @) < for(@)]|+ (loa @)+ oa@ll ), a)
is fulfilled for u(z) € Wy*(0,1).
Proof. By (4) we write
£z, u@), o @) < |lor@)]| + [lo2(2)]| . [Ju@)]| + [l (@) &' @)]

Recall also (16). The result is (17).
Lemma 3. For the solution of the problem (1), (2) we have the inequality

l(@)[l, < 1, (18)

where

l

o= o) (19)

Proof. We multiply the equation (1) by u(z) and integrate the resulting equality with respect
to x from 0 to [. By using (2), we get

)15+ m ([[u@)[}) fu@)} = (G, u(@). o @), u()).
By (16) and (3), we obtain

2
(o (1)) @)l < 26wt @ o
Therefore, by (17),

(24 ()" () Il - ol ol < ol

From this relation and (6) follows (18).
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Lemma 4. Suppose we are given some numbers vy, > 0, k= 0,1,..., for which the inequality
v <avg_1+b, k=12,..., (20)

where 0 < a < 1, b > 0, holds. Then we have the following uniform estimate with respect to the
index k:

l1—a

vk§1()+amax<0,vo b >, k=1,2,.... (21)
a

Proof. By virtue of (20), by the method of mathematical induction, we have v;, < aFvy +
+(a*t+ a2 4+ ...+ 1)b, k=1,2,..., which implies

1—dF b b
v < ak’l)o + a4 b= +af Vg — . (22)
1—a 1—a 1—a
k ) b
Let us denote v, = a” | vg — 7 and consider two cases vy < ] and vy > T In the
b
first case v, < 0 and by virtue of (22) v < 1 , k =1,2,.... In the second case v > 0,
—a
b b b
maxvy = v, = al vg — 1>, which, by virtue of (22), yields v, = T 4 + a(vo — 7 >,
- - —a
k=1,2,.... From this conclusions the validity of the estimate (21) follows.

Lemma 5. Approximations of the iteration method (9) satisfy the inequality
|ue(@)||, <cas k=1,2,..., (23)
where

ct, i oo + [los@)] . =0,
¢ = (24)

c1 + comax (O, luo(x)|l1 — cl), if Hag(x)Hoo + Hag(x)Hoo #0

a= (1 (&) I+ Lo

Proof. Replace k by the index k£ — 1 in the equation (11), multiply the resulting relation by
u(z) and integrate over x from 0 to [. Taking (12) into account, we get

Huk(w)Hg —I—m(Huk_l(:E)HD Huk(x)Hf = (f(:n,uk_l(x),u%_l(:z:)),uk(:n)) E=1,2,....

Applying (3) and (15), we have

(a—i—( ))H“k )| < —Hf(x,ukfl(x),%fl(x))H [ur ()],

1\ 1

which implies
(o (5)) ha@lh < 21760 was(e) s )|
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Hence, by using (17), we conclude that

(los@l + (lox(@ s + sl ) sl )

1 l

€ — ==
()

This relation is an inequality of type (20), where

s ()

Vg = Hu;;;(-'l;) 1’

1 1

= @t @), b= g L@
= (DQW( @)=+ ln@Il). b - <7;)%” (@)

Let us apply (6), (19) to these formulas and carry out some calculations. As a result, for Hag(:n) HOO +

+ Hag(x)Hoo = 0, we obtain @ = 0 and 1 E L= while for Hog(a:)Hoo + Hag(x)Hoo # 0 we have

b e . . .
a = ¢o and 1. =c By considering these two cases with the estimate (21), we get convinced
—a

that (23) is valid.
By Lemmas 3 and 5 it will be natural to require that the initial approximation ug(x) in (9) satisfy
the condition

o], < e 03

Then, by virtue of (24) and (23), we have Huk x
implies

Hl < ¢1, which, with (19) taken into account,

l
Huk($)H1 < EHUl(m)H’ k=0,1,.... (26)

6. Convergence of the method. Multiplying (13) by dux(x), integrating the resulting equality
with respect to = from 0 to ! and using (14), we come to the relation

oue@); + 5 ((m(ua@12) +m ()7 ) () |2+

= (f(x,uk_l(x),uﬁg_l(x)) — fz,u(z), (), 5uk(a:)>, E=1,2,....
Applying (3)—-(5) and (16), we first obtain

H(Suk(x)‘@%—aHéuk(x)Hf llH‘ uj,_ p )+, dup_ p( ))‘—I—
(2 oo w1 (@) + W3 (@) o 18— (2)1]) | (2) | <

1
< 50 TT (lun—p (@)l + )], ) 19—, +
p=0
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(1
+2 (Lol + n(o ||M)H||6ukp .

and after that, by virtue of (18) and (26), we have
A\ 2\
Héuk(az)Hl < <a+ (l> > ll H ‘uk p |1 + Hu” ( ))

AN l
#(5) 1@l + L1 |10kl < sl k=12,

where

o= (o4 ) (o4 o2}

Taking (10), (19) and (16) into consideration we come to the following result.
Theorem 1. Let assumptions (3)—(6) and (25) be fulfilled. Suppose besides

qMZW)g(W) (2 (Y 4 oo + Tl ) <1

l

Then the approximations of the iteration method (9) converge to the exact solution of the problem
(1), (2) and for the error the estimate

1-p
||wr(z) — u(x)Hp < <l> quuo(:n) —u(z)],, k=1,2,..., p=0,1,

s

is true.

7. Numerical experiment. The results on the convergence of the iteration process (9) to the
sought function (8) were confirmed by numerical experiments. For illustration, we present here the
result of numerical computations of one of the test problem.

. . 1
We consider a special case, where m(z) = mg+myz, mg =1, m; = 3 the beam length [ = 1,

exact solution u(z) = z(z — 1)(2? — z — 1), i.e., u(z) = 2* — 22° + =, the right-hand side of the
equation (1)

1

f(z,u(z),u (z)) = T (435 /2( ) — 34834/ (x) —

—1566u(z) + 69625 — 31322° + 2088z + 796.5).
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Fig. 1. Case of five iterations, n = 10. Fig. 2. Case of five iterations, n = 20.

We carried out nine iterations. In the case of division of the interval [0, 1] into n = 10, 20 parts
(with h = 0.1, 0.05, respectively) the integrals were computed using the generalized trapezoid rule.
Here we applied the following definition of the kth iteration error:

error k= max {abs(up(z;) — wp—1(zi))}, @ =th, k=1,2,...,9.

i=0,1,...,n

The error of numerical values are given in the table below.

error k
1 2 3 4 5 7 9
10 | 0.43203 | 0.16734 | 0.06405 | 0.02473 | 0.00953 | 0.00142 | 0.00021
20 | 0.43328 | 0.16715 | 0.06365 | 0.02446 | 0.00938 | 0.00138 | 0.00020

n

Initial approximation of approximate solution ug(xz) = 0. In the case of five iterations for n =
= 10, 20 the exact and approximate solutions are graphically illustrated (Figs. 1, 2).

In Figures 1 and 2 the numbers 7, 2, 3, 4, 5 corespond to the numbers of iterations, respectively.
And the graph of the fifth iteration uz(x) actually coincides with the graph of the exact solution

Numerical experiments clearly show the convergence of approximate solutions with the increase
of the number of iterations and the influence of n number of the interval divisions on the rate of
convergence.
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