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CHARACTERIZATIONS OF ADDITIVE £-LIE DERIVATIONS
ON UNITAL ALGEBRAS

XAPAKTEPU3ALISA AAUTUBHOTO £-AUP®EPEHIIFOBAHHSA JII
HA YHITAJIBHUX AJI'EBPAX

Let R be a commutative ring with unity and U be a unital algebra over R (or field ). An R-linear map L : U — U is called
a Lie derivation on U if L([u,v]) = [L(u),v] 4 [u, L(v)] holds for all u, v € U. For scalar £ € F, an additive map L :
U — U is called an additive £-Lie derivation on U if L([u, v]¢) = [L(u),v]e + [u, L(v)]e, where [u, v]¢ = uv—E&vu holds
for all u,v € U. In the present paper, under certain assumptions on U it is shown that every Lie derivation (resp., additive
&-Lie derivation) L on U is of standard form, i.e., L. = 0+ ¢, where ¢ is an additive derivation on U and ¢ is a mapping ¢ :
U — Z(U) vanishing at [u,v] with uv = 0 in U. Moreover, we also characterize the additive {-Lie derivation for £ # 1
by its action at zero product in a unital algebra over F.

Hexaif R — koMyTaTHBHE Kijblie 3 oquHuLero, a U — yHiTanpHa anredpa Hag R (abo monem ). R-niniiiHe BinoOpaxeHHs
L : U — U nasusaerscs qudpepenuiroBanssiM JIi Ha U, skmo L([u, v]) = [L(u), v] + [u, L(v)] BuKoHYeTBCS U151 BCiX U,
v € U. Jna ckansapa £ € F agurusne BinoOpakenus L : U — U HasuBaeThes agutuBHUM &-audepenmiroBannsam Jli Ha
U, sxmo L([u,v]e) = [L(u),v]e + [u, L(v)]e, ne [u,v]e = uv — vu BukoHyeThCs Wit Beix u,v € U. Y wiit po6oti npu
JIesKUX NpunymeHasx Ha U noseneHo, mo koxHe audeperuiroBanas Jli (BianoBigHo, aautiBHE &-qudepeHmiroBaHas JIi)
L ua U mae cTaHAapTHUi BUDIAA, TOOTO L = & + ¢, ne § — amutuBHe mudepeHitiroBands Ha U, a ¢ — BimoOpaxeHHs ¢ :
U — Z(U), mwo 3uuKae Ha [u,v], skmo uvv = 0 y U. Bitsmr Toro, oxapakrepi3oBaHo agutuBHe &-anudepentitoBanus JIi
s £ # 1 gepes foro 1ir0 Ha HyJIbOBHiT T0OYTOK B yHiTanbHii anreopi Ham F.

1. Introduction. Throughout, let R be a commutative ring with unity and U be a unital algebra
over R with the center Z(U). For any w, v € U, [u,v] will denote the commutator uv — vu,
while u o v will represent the anticommutator uv + vu. An R-linear map L: U — U is called
a derivation (resp., Jordan derivation) on U if L(uv) = L(u)v + uL(v) (resp., L(uv + vu) =
= L(u)v + uL(v) + L(v)u + vL(u)) holds for all u, v € U. An R-linear map L: U — U is called
a Lie derivation on U if L([u,v]) = [L(u),v] + [u, L(v)] holds for all u, v € U. Obviously, every
derivation is a Jordan derivation and Lie derivation but not conversely (see [1, 2]).

During the recent past there has been a great deal of work concerning characterization of different
linear mappings viz., Lie derivation, additive £-Lie derivation, generalized Lie derivation on various
algebras (see [5, 6, 8 — 14] and references therein). In most of the cases, the object of the studies is
to obtain the conditions under which derivations (Lie derivations) can be completely determined by
the action on some subsets of the algebras. There are several papers on the study of local actions
of Lie derivations of operator algebras. Lu and Jing [8] proved that if X is Banach space of dimension
greater then two and a linear map L: B(X) — B(X) such that L([u,v]) = [L(u),v] + [u, L(v)]
for all u, v € B(X) with uv = 0, than there exists an operator 7 € B(X) and a linear map ¢:
B(X) — CI vanishes at all the commutators [u, v] with uv = 0 such that L(u) = ru—ur+¢(u) for
all u € B(X). Inspired by this result, Ji and Qi [5] proved that under certain restrictions on triangular
algebra 7 over commutative ring R, if L: 7 — T is an R-linear map such that L([u,v]) =
= [L(u),v] + [u, L(v)] for all u, v € T with uv = 0, then there exists a derivation §: 7 — T
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and an R-linear map ¢: 7 — Z(T) vanishes at all the commutators [u,v] with uv = 0 such that
L =0+ ¢. Also, Ji et al. [6] studied the same result on factor von Neumann algebra with dimension
greater than 4. Qi and Hou [12] gave the characterization of Lie derivation on any von Neumann
algebra U without central summands of type I; and obtained that if L : U — U is a linear map such
that L([u,v]) = [L(u),v] + [u, L(v)] for all u, v € U with uv = 0, then there exists a derivation ¢ :
U — U and a linear map ¢: U — Z(U) vanishes at all the commutators [u,v] with uv = 0 such
that L = § + ¢. In particular, L: U — U is a linear map such that L([u,v]) = [L(u),v] + [u, L(v)]
for all u, v € U with wv = 0, if and only if there exists an operator » € U and a linear map ¢:
U — Z(U) vanishes at all the commutators [u,v] with uv = 0 such that L(u) = ur — ru + ¢(u)
for all uw € U. Furthermore, Qi [13] characterized Lie derivation on J-subspace lattice algebras
and proved the same result due to Lu and Jing [8] on J-subspace lattice algebra AlgL, where L
is J -subspace lattice on a Banach space X over the real or complex field with dimension greater
than 2.

Let U be a unital algebra over real or complex field F. If any pair u,v € U commute, then
their Lie product is zero. For scalar £ € F and w,v € U, v commutes with v up to a factor £ if
uwv = &vu. In the theme of quantum groups and operator algebras [3, 7], the notion of commutativity
up to a factor for pairs of operators has been studied. Qi and Hou [9] introduced the concept of £-Lie
derivation. For any u,v € U, [u,v]¢ = uv — {vu will denote the £-Lie product. A linear map L :
U — U is said to be a ¢-Lie derivation if L([u,v]¢) = [L(u),v]¢ + [u, L(v)]e. If L is additive, then
&-Lie derivation is called an additive £-Lie derivation. It can be easily seen that if £ = 0,1, —1, then
&-Lie derivation is called derivation, Lie derivation and Jordan derivation, respectively. Note that an
additive map L: U — U is called a generalized derivation if L(uv) = L(u)v + uL(v) — uL(I)v for
all u,v € U. During the recent years many authors characterized £-Lie derivation on several rings
and operator algebras (see [10, 12, 14]). Characterization of £-Lie derivation on prime algebras, von
Neumann algebra and triangular algebra can be found in [10, 14, 15].

Motivated by the above observations, in Section 3, we characterize a Lie derivation on unital
algebras over a commutative ring R at zero product and prove that if L: U — U is an R-linear
map such that L([u,v]) = [L(u),v] + [u, L(v)] for all u, v € U with uv = 0, then under certain
appropriate restrictions on U there exists a derivation ¢ : U — U and an R-linear map ¢: U — Z(U)
vanishes at all the commutators [u,v] with uv = 0 such that L = 0 + ¢. In Section 4, we study
the characterization of £-Lie derivation at zero product on unital algebras over a field I with certain
limitations and find that an additive map satisfies L([u, v]¢) = [L(u),v]¢ +[u, L(v)]¢ for all u,v € U
with wv = 0 if and only if L(I) € Z(U) and (i) for £ # 0, —1, L({uv) = {L(u)v + &ul(v) and
there exists an additive derivation ¢ satisfying §(£1) = L(I) such that L(u) = 6(u) + L(I)u for all
u € U; (ii) for £ = —1, L is an additive derivation; (iii) for £ = 0, there exists an additive derivation
9 such that L(u) = 6(u) + L(I)u for all u € U. In the last section, we discuss some applications of
these results on few important examples of unital algebras.

2. Preliminaries. Let U be an unital algebra over a commutative ring R with an idempotent
p # 0 and let ¢ = 1 — p. Then according to the well known Peirce decomposition formula, U can
be represented as U = pUp + pUqg + qUp + qUqg, where pUp and qUq are subalgebras with unital
elements p and ¢, respectively, pUq is an (pUp, gUg)-bimodule and ¢Up is an (¢qUg, pUp)-bimodule.
We will assume that U satisfies
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pup.pUq = {0} = qUp.pup implies pup =0,
(2.1
pUg.quqg = {0} = quq.qUp implies qug =0
for all v € U. Some specific examples of unital algebras with nontrivial idempotents having the
property (2.1) are triangular algebras, matrix algebras, algebras of all bounded linear operators of
Banach space and the unital prime algebras with nontrivial idempotents.
Throughout, this paper we shall use the following notions: Let U = pUp + pUqg + qUp + qUq
be unital algebra with nontrivial idempotents p and ¢ = 1 — p satisfying (2.1). Let U1 = pUp,
Uq2 = pUq, Us; = qUp and Uge = qUp. Then U = Uy1 + Uyo + Uz + Uss. The center of U is

Z(W) = {u11 +ug2 € Uy + Uz | ur1uiz = uiouge, ugiuyn = ugaugy Yugz € Upa, ugr € Usy b
Define two natural projections my(,, : U — Uj1 and my,, : U — Uz by
My, (urn + uie +ugr +uge) = upy  and  my,, (w1 + w1z + ugy + uze) = uao.

Moreover, my,, (Z(U)) € Z(Uy1) and my,,(Z(U)) € Z(Uaz) and there exists a unique algebra
isomorphism 7 : my,, (Z(WU)) = my,, (Z(WU)) such that uijuia = wioT(u11) and ugiuir = 7(ui1)ug;
for all u11 € ﬂull(Z(U)), uie € Uio, u21 € Usy.

3. Characterization of Lie derivations. In this section, we characterize Lie derivation by action
at zero product on a unital algebra with a nontrivial idempotent. Actually, we prove the following
result.

Theorem 3.1. Let U be a 2-torsion free unital algebra over a commutative ring R with a
nontrivial idempotent p satisfying (2.1), my,(Z(U)) = Z(Uy1) and my,,(Z(W)) = Z(Uaz). If L:
U — W is an R-linear mapping satisfying L([u,v]) = [L(u),v] + [u, L(v)] for all u, v € U with
uv = 0, there exists a derivation 6 : U — W and an R-linear map ¢: U — Z(U) vanishing at all
the commutators [u,v] with uv = 0 such that L = 6 + ¢.

Throughout this section we assume that U is 2-torsion free unital algebra over a commutative
ring R satisfying the hypotheses of Theorem 3.1. In order to prove the above result, we start with
the following sequence of lemmas.

Lemma 3.1. For any p, q:

() pL(p)p +qL(p)g € Z(W),

(i) pL(q)p +qL(q)q € Z(U),

(iii) pL(I)p +qL(I)q € Z(U).

Proof. (i) Since ujop = 0 for any uio € Ujo, it follows that

—L(u12) = [L(u12), p] + [u12, L(p)] = L(u12)p — pL(u12) + u12L(p) — L(p)u12. (3.1)

Multiplying the last equality by p and ¢ from left and right, respectively, we find uj2¢L(p)q =
= pL(p)puiz. Also, pugy = 0 implies that qL(p)que; = uo1pL(p)p. From the last two expressions
we arrive at pL(p)p + qL(p)q € Z(U).

(if) Since u21q = 0 = qu2, using similar steps as used in (i), we obtain that pL(q)p + ¢L(q)q €
e Z(U).

(iii) Since p(I — p) = 0, we have

0= [L(p),I — p| + [p, L(I — p)] = pL(I) — L(I)p.

This implies that pL(I)q = 0 = ¢L(I)p. Now, from (i) and (ii), we get L(I) = pL(I)p+ qL(I)q €
e Z(U).
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Remark3.1. Define a map L': U — U by L'(u) = L(u) + [ug,u] for all w € U, where
ug = pL'(p)q — qL'(p)p.

Accordingly, consider only those Lie derivation L: U — U which satisfies pL(p)g = 0 =
= qL(p)p. Now, it can be easily seen from the following lemma.

Lemma 3.2. Forany u, v e U:

() L([u,v]) = [L(u),v] + [u, L(v)],

(i) L(I), L(p), L(q) € Z(W).

Lemma 3.3. For any u;; € Uyj, L(ug;) € Wy, where i # j € {1,2}.

Proof.  Consider the case for ¢ = 1 and j = 2. As uj9p = 0, using (3.1) we find that
pL(u12)p = qL(u12)p = qL(u12)g = 0. Hence, L(uj2) € Uje. Similarly, we can calculate for
i=2and j=1.

Lemma 3.4. L(U;) C Uyy @ Uge, and there exists a map ¢; : Wiy — Z(W) such that L(ug;) —
— qﬁz(u”) € Uy fOl’ all u;; € uii, = 1,2.

Proof. Since u11q = 0 for any uq1 € Uy, it follows that

0 = [L(u11),q] + [u11, L(q)] = L(u11)q — qL(u11).

This yields that L(ui;) € Uyp + Uge. Now for any v, € Wy, @ = 1,2, we can write L(ujp) =
= v11 + v29. Since uqiuse = 0, we obtain

0 = [L(u11), u22] + [u11, L(u22)] = vaouas — ugavaa + [u11, L(uaz)].
Now multiplying both sides by ¢ in the above expression, it follows that vyy € Z(Ugz). Thus, for
any z € Z(U),

L(ui1) =vi1+z2qg=vi1+2z—2p=(vi1 —2p) + z € U1 + Z(WU).

Hence we conclude that there exists a map ¢; : U3 — Z(U) such that L(ui;) — ¢1(u11) € Uyg for
all uy; € Uqq. Since L is R-linear map, we can easily see that ¢ is R-linear map. Similarly, we
can show the result for ¢ = 2.

Remark3.2. Now we define two R-linear maps ¢: U — Z(U) and §: U — U by ¢(u) =
= ¢1(pup) + ¢2(quq) and 6(u) = L(u) — ¢(u) for all w € U. It is clear that §(u;;) € Uy for 1 <4,
J <2and 6§(u;j) = L(u;;) for 1 <i#j <2

Lemma 3.5. For any u;; € U;;, 1 <14, j <2

(1) S(uiiuig) = 0(wii)ug; + uid(ui;), where i # j € {1,2},

(ii) (5(uﬂu“) = (5(uﬁ)u“ + u]z(5(uu), where 1 7&] € {1, 2}.

Proof. (i) Since ujouq; = 0, for any u;; € Up; and uge € Uy, we have

—0(uriui2) = —L(ujjuiz) =
= [L(ui2),u11] + [u12, L(u11)] =
= L(ui2)uir — uii L(uia) + uiaL(u11) — L(u1)uie =

= —0(u11)uiz — u116(ui2).

This gives that 5(U11U12) = 5(’&11)’&12 + U115(U12) for all w11 € Uiy and uis € Ups.
In a similar manner, we can obtain rest of the cases.
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Lemma 3.6. For any ug, vy € Uy, 1 = 1,2

(1) O(usivii) = 6(wii)vis + i (vig),

(i) o(p) =0 =10(q).

Proof. Consider the case for i = 1. For any ¢15 € U2, using Lemma 3.5 we find §(ujiv11t12) =
= d(ur1v11)t12 + u11v110(t12).

On the other hand, §(ujjvi1t12 = 6(u11)viitiz + u11v110(t12) + wi116(v11)t12. From the above
two expressions, we have {d(u11v11) — 0(u11)vi1 — u116(v11) }t12 = 0. Similarly, by using Lemma
3.6, we obtain to1{d(u11v11) — 6(u11)v11 — u116(v11)} = 0. Now by (2.1) we arrive at d(ujjv11) =
= 0(u11)v11 + u116(v11) for all uqp,v11 € Uqy. Similarly for 7 = 2.

(ii) From (i) and using Remark 3.2, we find d(p) = 0 = d(q).

Lemma 3.7. For any u;j,vij € Wiz, 0(uijvjs) = 0(wij)vji + uijo(vj;), where i # j € {1,2}.

Proof. First consider ¢ = 1 and j = 2. Since (uj2v21 — w12 — v21 + q)(p + v21) = 0 for any
Ui € ulz and V21 € u21, we have

—0(u12v21) + 6(u12) — 0(varui2v21) + 6(v21u12) = —O(U12V21 — UI2 + V21UI2V21 — V21 UI2) =
= 0([uigva1 — w12 —v21 + ¢, p + v21]) =
= [L(u12v21) — L(u12) — L(va1) + L(q),p + va1 ]+
+[ui2v21 — ui2 — v21 + q, L(p) + L(v21)] =
= 0(u12) — d(u12)var — v210(u12021) + v210(U12)—
—u126(v21) — 0(v21)u12v21 + 6(v21)U2.
By using Lemma 3.5, it follows that
—0(u12)var + v210(u12) — w120(v21) + 6(var)uiz + d(u12v21) — 0(v2ruie) = 0. (3.2)
Multiplying the above expression by wujs from right and ue; from left, respectively, we obtain
{=0(u12)v21 — u126(v21) 4+ d(u12v21) buiz = 0 and ugi {—0(u12)v21 — u128(v21) + 0(u12v21)} = 0.
By assumption, we have §(u12v921) = d(u12)va + u128(ve1) for all uia € Uyg and vig € Ug;.
In the similar manner, multiplying (3.2) by wuo; from the right and w12 from the left, respectively,
we obtain for ¢ = 1 and j = 2.
Proof of Theorem 3.1. In view of Remark 3.2 it remains to show that §(uv) = 6(u)v + ud(v)
for all u, v € U. Suppose that © = w11 + w12 + ug1 + ug2 and v = vi1 + vi2 + v21 + va2 for all uyy,

v11 € Uir; w2, vig € Ui ugy, vo1 € Ugy and ugs, voe € Uss. Now, using Lemmas 3.6 and 3.7 it
follows that

d(uv) = 6((u11 + w2 + w21 + u22)(vi1 + viz + v21 + v22)) =
= 0(un1v11) + d(ur1vi2) + 0(u12v21) + 6(ui2v22)+

+(ug1v11) + 0(u21v12) + d(u22v21) + d(ugevaa) =
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= 6(u11)vir + 0(ur1)viz + 0(u12)ver + d(u12)vaz + 6(u21)vii+
+6(u21)viz + 6 (uz2)var + 6 (uze)vaz + u116(vi1) + u116(viz)+
+u126(va1) + u120(v22) + u216(v11) + u210(v12) + U220 (v21) + u226(v22) =
= 6(u11 + ui2 + ua1 + ug2)(v11 + viz2 + va1 + va2)+
+(u11 + w12 + u21 + u22)d(vi1 + vi2 + v21 +v22) =

= 0(u)v + ud(v).
That is, ¢ is a derivation on U. Lastly, we have to show that ¢[u, v] = 0 with uv = 0:
¢([u7v]) = [L(u)ﬂ)} + [u7 L(U)} - 6([“?”]) = [(5(71),1)} + [u7 5(”)} - 5([“?”]) =0.

Therefore, Lie derivation L has standard form, i.e., L can be written as a sum of derivation and a
linear map vanishing at commutator by the action at zero product.

Theorem 3.1 is proved.

4. Characterization of ¢£-Lie derivations. In this section, we characterize £-Lie derivations for
& # 1 by its action at zero product on a unital algebra containing nontrivial idempotents.

Theorem 4.1. Suppose that U is a 2-torsion free unital algebra over a field F with a nontrivial
idempotent p satisfying (2.1) and m,,(Z(W)) = Z(U11), mu,,(Z(U)) = Z(Uge). Let L: U — U
be an additive mapping satisfying L([u,v]¢) = [L(u),v]¢ + [u, L(v)]¢ for all u, v € U with uv = 0.
Then we have the following cases:

(i) If & # 0,—1, then L(uv) = {L(u)v + Eul(v) and there exists an additive derivation §
satisfying 6(&1) = EL(I) such that L(u) = §(u) + L(L)u if only if L(I) € Z(U) for all u € U.

(1) If € = —1, then L is an additive derivation.

(iii) If € = 0, then there exists an additive derivation § such that L(u) = 6(u) + L(I)u if and
only if L(I) € Z(U) for all u € U.

Assume that U is 2-torsion free unital algebra over a field F satisfying the hypotheses of Theo-
rem 4.1. The direct part is obvious. To prove only if part, we need the following lemmas.

Lemma 4.1. pL(I)g=0=qL(I)p and qL(p)qg =0 = pL(q)p.

Proof. Since pq = 0, we find

0= L([p,qle) = L(p)qg — £qL(p) + pL(q) — EL(q)p. 4.1

Now multiplying by ¢ on both side of (4.1), we get qL(p)q = 0. Again, multiplying by p and ¢
from left and right, respectively, in (4.1), we obtain pL(p)q + pL(q)q = pL(I)g = 0. As gp =0, on
the similar steps we can find that ¢L(I)p = 0 and pL(q)p = 0.

Remark 4.1. Define amap L': U — U by L'(u) = L(u) + [ug,u| for all uw € U, where ug =
=pL'(p)q — qL'(p)p.

Accordingly, consider only those &£-Lie derivation L: U — U which satisfies pL(p)g = 0 =
qL(p)p. Now, it can be easily seen from the following lemma.

Lemma 4.2. L(p) = pL(p)p and L(q) = qL(q)q.
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Lemma 4.3. For any u;; € U;;, i # j and i,j € {1,2}:
() L) € Z(W),

(i1) L(uij) € uij.

Proof. (i) Since uiop = 0 for all ujs € Ujo, we have

L(—&ui2) = L([wiz2, ple) = L(u12)p — EpL(urz) — EL(p)ura. (4.2)
Since quys — 0, using Lemma 4.2, we obtain
L(—§u12) = —§u12L(q) + qL(u12) — EL(u12)g. (4.3)
Combining (4.2) and (4.3), we arrive at
L(uz2)p — EpL(ui2) — EL(p)urz = —€uazL(q) + qL(u12) — {L(u12)g. (4.4)

Now, if & # 0, then by multiplying p and ¢ on left and right, respectively, in (4.4) and using
Lemma 4.2, we have L(p)ui2 = pL(p)pui2 = u12qL(q)q = u12L(q).
Now, in case of £ = 0, using (p + u12)(u12 — q) = 0 = (u12 — q)(p + u12), we find

0= L(p+wui2)(uiz —q) + (p + u12) L(u12 — q) =
= L(p)u12 + L(ui2)uiz — L(u12)q + pL(u12) + u12L(u12) — u12L(q)
and
0 = L(ui2 — q)(p + u12) + (u12 — ¢) L(p + u12) =
= L(u12)p + L(ui2)u12 + u12L(u12) — qL(u12).
From the above two expressions, we arrive at L(p)uja = u12L(q). We have
L(I)ui2 = L(p + q)uiz = L(p)uiz = u12L(q) + w12 L(p) = w12 L(I).
Also, we can show that L(q)uz; = wu21L(p) and hence L(I)ug; = wgiL(I). This implies that
L(I) e Z(U).
(ii) Now multiplying by p and ¢, respectively, on both the sides of (4.4), we find pL(u12)p =
=0 = qL(u12)q.
If £ = 0, then from (4.2), we get ¢L(u12)p = 0 which leads to L(ui2) € Uypo.
If £ = —1, then on using (p + u12)(u12 — q¢) = 0 and by (4.4), we obtain

0= L(p+ui2)(u12 — q) + (p + u12) L(u12 — q) + L(ui2 — q)(p + u12) + (u12 — ¢) L(p + u12) =
= L(p)uiz + 2L(u12)u12 — L(u12)q + 2u1aL(u12) =
= —qL(u12) + L(u12)p + pL(u12) — ui2L(q) =

= 2L(u12)u12 + 2u12L(u12).
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This yields that ¢L(u12)puiz = 0 = u12qL(u12)p and hence ¢L(u12)p = 0.
If £ # 0, —1, then for any uj9,v12 € Ujo using the fact (v12 — ¢)(p + ui2) = 0, we obtain

L(&urz — &uiz) = L([vi2 — ¢, p + ui2)e) =
= L(v12)p + L(vi2)u12 — EpL(viz) — EuiaL(vi2) + EuiaL(q)+

+viaL(u12) — qL(u12) — EL(p)viz — EL(u12)vi2 + EL(u12)q. 4.5)

Now multiplying (4.5) by p on both sides and using the fact pL(u12)p = 0, we get EujaqL(vi2)p =
= v12qL(u12)p. Multiplying (4.2) by ¢ on the left-hand side and p on the right-hand side, we have
qL(—&u12)p = qL(u12)p. Combining the above two equations, we obtain

v12qL(u12)p = v12qL(—&ur2)p = —E*u12qL(v12)p = —Ev12qL(u12)p.

This implies that gL(uj2)p = 0 and hence L(u1z) € Ujo for all ujp € Uje. In the similar manner,
we can prove that L(ug1) € Uay for all ug; € Ug;.

Lemma 4.4. For any u; € Wy, L(uy;) € Wy, where i = 1, 2.

Proof. Since uy1q = 0 for any uq; € Uy, we have

0= [L(UH),(]]g + [w11, L(Q)]5 =
= L(u11)q — &qL(u11) + u11L(q) — EL(q)uir =

= L(u11)q — &qL(u11). (4.6)

Now using the fact & # 1 and multiplying (4.6) by ¢ on both sides, by p on left- and right-hand side,
respectively, we get ¢L(u11)q = pL(u11)q = ¢L(u11)p = 0. This implies that L(u11) = pL(ui1)p
for all w11 € Uqq.

If ¢ =0, then from (4.6) we obtain pL(u11)qg = 0 = qL(u11)q. Note that qui; = 0 which gives
that

0= [q, L(ull)]f + [L(q)7u11]§ =
= qL(u11) — §L(u11)q + L(q)uar — §uinL(q) =

= qL(u11) — £L(u11)q.

This implies that ¢L(u11)p = 0 and hence L(u11) € Uy for all uyy € Uyq. Similarly, we can show
for i = 2.

Proof of Theorem 4.1. The proof is divide in following two steps:

Step 1. The following statements are true:

(i) If £ #0,—1, then L(¢xy) = {L(x)y + ExL(y) for all z,y € A.

(i) If £ = —1, then L is an additive derivation.

(iii) If & = 0, then there exists an additive derivation ¢ such that L(z) = é(x) + L(I)x for all
x e A
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(i) Since y;jx; = 0 for all x;; € Ay, yi; € Aij and 1 < # j < 2, we obtain
—L(&xiyiz) = [L(yij), wiile + [yig: L(wis)le = —€xiil(yij) — EL(wii)yi; -
This implies that
L(xiiyij) = EL(zi)yij + ExaL(yij)- (4.7)
Similarly, we can find
L(zijyj5) = EL(wij)ys5 + &xig L(yj5)- (4.8)
Now, for any z;, yii € Aii, we have L(xyviiyij) = EL(xiYii ) vij + Exiivii L(yij)-

On the other hand, L(ziiyiiyij) = EL(24)yiiyi; + &2 L(E  yii)yij + Exiiyii L(yi;). Combining
the above two expressions, we get

0 = (L(wiiyii) — L(wio)yii — Exia LE " yaa))yij =

= (L(&xiiyii) — EL(z41)yii — Exui (i) Yij-

Similarly, using (4.8) we find y;;(L(&xiiyii) — EL(x4i)yi — £z L(yii)) = 0. Now by assumption,
the last two expressions leads to

L(&xiiyii) = EL(vi1)yii + ExiL(yii)- 4.9

Again for all x;; € Aij,yj € Aji and @ # j, (z495 — Tij — yji + q)(p + yji) = 0. Now applying
similar steps as used in proof of Theorem 3.1, we arrive at

L(§xijyji) = EL(wij)y i + §xij L(yji)- (4.10)

Applying (4.7)-(4.10) and using the similar calculation as used in proof of Theorem 3.1, we obtain
L(&xy) = EL(x)y + ExL(y) for all z,y € A.

(ii) If we take & = —1 in (i), then we find that L is an additive derivation.

(iii) Note that if £ = 0 and zy = 0, then by definition we have L(z)y + zL(y) = 0 for all
z,y € A. Also, here we will use the fact L(p)x12 = x12L(q) and L(q)z21 = x21L(p) for all
19 € Aqg and 291 € Asgq. Since (-"L'11 + l‘nylz)(q — y12) =0 for all z1; € Ay; and Y12 € A12, we
have

0= Lz +z11y12)(¢ — y12) + (11 + z11y12) L(q — y12) =
= —L(z11)y12 + L(zn1y12) — 211 L(y12) + z11912L(q).
This implies that
L(z11y12) = L(z11)y12 + z11 L(y12) — 211 L(p)y12. (4.11)

Also, note that (z22 + z22y21)(p — y21) = (P — Z12) (Y22 + Z12Y22) = (¢ — z21)(y22 + Z12Y22) = 0.
By using these relations, we obtain

L(z22y21) = L(x22)y21 + 22 L(y21) — 222 L(q)y21, (4.12)
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L(z12y22) = L(z12)y22 + z12L(y22) — x12L(p)y22, (4.13)

L(z21y11) = L(z21)y11 + 221 L(y11) — w21 L(q)y11- (4.14)

Now, using (4.11), (4.14) and applying similar steps after (4.8), we find
L(ziiyii) = L(wii)yis + i L(Yii) — i L(p)yii- (4.15)
Also, since (x12 + x12y21)(p — y21) = 0 = (221 + x21412)(¢ — y12) and using Lemma 4.3, we have

L(z12y21) = L(x12)y21 + z12L(y21) — x12L(p) Y21, (4.16)

L(z21y12) = L(x21)y12 + z21L(y12) — 221 L(q)y12. (4.17)

Applying (4.11)-(4.17) and using the similar calculation as used in the proof of Theorem 3.1, we
obtain that L(zy) = L(x)y + L(y) — zL(I)y for all z,y € A.

Step 2. If £ # 0,—1, then there exists an additive derivation 0 satisfying 6(£1) = £L(I) such
that L(z) = §(z) + L(I)z for all z € A.

By Step 1, we have L(¢xy) = EL(x)y + {xL(y). As zy = 0 we find {L(x)y + xL(y) = 0
and hence L(z)y + xL(y) = 0. Again, by Lemma 4.4 (Step 2), it is similar to the case £ = 0 and
hence there exists an additive derivation § satisfying L(x) = §(z) + L(I)z for all z € A. Also,
L(ET) = EL(I)I + EIL(I) = 2€L(I). Therefore, L(¢I) € Z(A). Now, since 12p = 0,

6(=&x12) — EL(I)z12 = L(—€x12) = [L(712), ple + [712, L(p)]e =

= [6(z12) + L(I)z12, ple + [212,6(p) + L(I)ple = —&(12) — 2§ L(I)212.

This gives that §({z12) = £6(z12) +EL(I)x12. On the other hand, §(€x12) = §(&E1)x12 +E0(x12). Tt
follows that (6(§1)—&L(I))a12 = 0. In the similar way, we can obtain that z9; (6(61)—£L(I)) = 0.
Hence by (2.1), we have 6(&1) = EL(1).

Theorem 4.1 is proved.

5. Applications. As a direct consequence of our Theorem 3.1, we have the following results.

Corollary 5.1 ([8], Theorem 2.1). Let X be a Banach space of dimension greater than 2, and L :
B(X) — B(X) be a linear map satisfying L([u,v]) = [L(u),v] + [u, L(v)] for any u,v € B(X)
with wv = 0. Then there exists an operator r € B(X) and a linear map ¢ : B(X) — CI vanishing
at commutators [u,v] when uwv = 0 such that L(u) = ru — ur + ¢(u) for all u € B(X).

Corollary5.2 ([5], Theorem 2.1). Let A and B be two algebras over a commutative ring R with
unity I and I, respectively. Let M be a faithful (A, B)-bimodule and T = Tri(A, M, B) be a
triangular algebra consisting of A, M and B. If nA(Z(T)) = Z(A) and 73(Z(T)) = Z(B) and
L:T — T is an R-linear map such that L([u,v]) = [L(u),v] + [u, L(v)] for any u, v € T with
wv = 0, then there exists a derivation ¢ of T and an R-linear map ¢: T — Z(T) vanishing at
commutators [u,v] with wv = 0 such that L(u) = §(u) + ¢(u) for all v € T.

Corollary 5.3 ([5], Corollary 2.1). Let N be an arbitrary nest on a Hilbert space H of dimen-
sion greater than 2 and Alg N be the associated nest algebra. Let L: AlgN — Alg N be a linear
map satisfying L([u,v]) = [L(u), v]+ [u, L(v)] for any u,v € Alg N with uv = 0. Then there exists
an operator r € Alg N and a linear map ¢: AlgN — FI vanishing at commutators [u,v] when
uv = 0 such that L(u) = ru — ur + ¢(u) for all u € AlgN.
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For the finite dimensional case, it is clear that every nest algebra on a finite dimensional space is
isomorphic to an upper triangular block matrix algebra [4].

Corollary5.4. Let F be the real or complex field and n > 2 be a positive integer. Let B, (R) be
a proper block upper triangular matrix algebra over F and L: B,,(R) — B, (R) be a linear map
satisfying L([u,v]) = [L(u),v] + [u, L(v)] for any u,v € B,(R) with uv = 0. Then there exists
an operator r € B, (R) and a linear map ¢: B, (R) — FI vanishing at commutators [u,v] when
wv = 0 such that L(u) = ru — ur + ¢(u) for all u € B, (R).

Corollary5.5. Let U be a factor von Neumann algebra with deg(U) > 1 and L: U — U be
a linear map. Then L satisfies L([u,v]) = [L(u),v] + [u, L(v)] for any u,v € W with uv = 0
if and only if it has the form L(u) = ru — ur + 7(u) for all w € U, where r € U and T:
W — FI is a linear functional vanishing on each commutator [u,v] whenever uv = 0.

Proof. Since factor von Neumann algebra U satisfies (2.1) and all linear derivations of von
Neumann algebras are inner, L is the sum of inner derivation and a linear functional vanishing on
each commutator [u, v] whenever uv = 0.

Since every triangular algebra is the example of algebra that satisfies (2.1), the following result
is an immediate consequence of the Theorem 4.1.

Corollary5.6 ([11], Theorem 4.1). Let A and B be unital algebras over a field F, and M
be an (A, B) bimodule, which is faithful as a left A-module and also as a right 3-module. Let
T = Tri(A, M, B) be the triangular algebra consisting of A, B, M and & € F with £ # 0,1.
Assume that L: T — T is an additive map, mA(Z(T)) = Z(A) and 7p(Z(T)) = Z(B). Then
L satisfies L([u,v]¢) = [L(u),v]¢ + [u, L(v)]¢ for all u, v € T with wv = 0 if and only if
L(I) € Z(T) and there exists an additive derivation ¢6: T — T with §({I) = EL(I) such that
L(u) =6(u) + L(I)u for all u € T.

Corollary5.7 ([11], Theorem 4.2). Let N be a nest on an infinite dimensional Banach space
X over the real or complex field F, and let Alg N be the associated nest algebra. Assume that
e F with € #0,1 and L: AigN — AlgN is an additive map and there exists a nontrivial
element in N which is complemented in X. Then L satisfies L([u,v]¢) = [L(u),v]e + [u, L(v)]e
for any u,v € Alg N with uwv = 0 if and only if there exists an operator v € Alg N such that
L(u) = ur —ru for all u € AlgN.
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