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AN EIGENVALUE OF ANISOTROPIC DISCRETE PROBLEM
WITH THREE VARIABLE EXPONENTS

BJIACHE 3HAUEHHS AHI3OTPOITHOI JUCKPETHOI 3AJIAUI
3 TPbOMA 3MIHHUMH EKCIIOHEHTAMMU

We study the existence of a continuous spectrum of an anisotropic discrete problem, involving variable exponent.
The proposed technical approach is based on the variational methods and critical point theory.

BuB4aetscst mpobieMa iCHyBaHHS HENIEPEPBHOTO CHEKTPA aHI30TPOIHOI JUCKPETHOI 3ajadi i3 3MIiHHOIO €KCIIOHEHTOIO.
3anpornoHoBaHUH miaXia 0a3yeThes Ha BapialifHUX METOAaX Ta TeOpii KPUTHYHUX TOYOK.

1. Introduction. Let 7' > 2 be a positive integer and [1,7]z = {1,2,3,...,T}. We consider the
discrete anisotropic problem

~A <|Au(k: — 1)[PED2 Ak — 1)) + Ju(k) PP "2 u(k) + [u(k) 1P 2u(k) =

= Mu(k)["®)"2u(k) for ke [1,T]z,

@)
uw(0) =u(T'+1) =0,

where A denotes the forward difference operator defined by Au(k) = u(k + 1) — u(k), A > 0 is
a real parameter, p: [0,7]z — [2,+00) and ¢q,r: [1,T]z — [2, +00) are given functions.

In the last years, the study of boundary-value problems for finite difference equations has captured
special attention. This type of problems have an important role in different domains of research, such
as control systems, economics, computer science, physics, artificial or biological neural networks,
cybernetics, ecology and many others. For example, view the recent results in the references [1 -5,
17, 18]. The important tools employed to study this kind of problem are critical point theory and
variational methods.

However, there is an increasing interest to the existence results to boundary-value problems for
difference equations with p(k)-Laplacian operator, because of their applications in many fields. To
the best of our knowledge, discrete problems involving anisotropic exponents have been discussed for
the first time in [13, 16, 20], the authors proved the existence of a continuous spectrum of eigenvalues
for the problem

“A (yAu(k ~ 1) PED=2 A (e — 1)) = MNu(k)|*®2u(k) for ke [1,T]z,
(2)
u(0) =u(T+1) =0,

In [8-11, 19], the authors have studied the existence of at least one solution, multiplicity of
solutions and a sequences of solutions for the problem
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A <|Au(k C ) PED=2 Ay (e — 1)) = Mf(k,u(k)) for ke [1,T]z,

uw(0) =u(T +1) =0,

where f: [1,T]z x R —— R is a continuous function.

More recently, in [6, 7, 12, 14, 15, 21] the authors have been investigated the existence and
multiplicity of solutions for nonlinear discrete boundary-value problems involving p(.)-Laplacian
operator using variational methods.

Our analysis mainly concern the existence and the nonexistence of a weak solutions to problem
(1) more general than (2), with three variable exponents under appropriate assumptions (4) below,
between the functions exponents p(k), g(k) and (k). Our aim is to determine the concrets intervals
for the parameter A for which problem (1) has, or not has, a nontrivial solutions. More precisely,
we prove the existence of two positive constants A, and A* with A, < A* such that for each
A € [A*,+00) the problem (1) has at least one nontrivial solution, while for any A € (0, \s)
problem (1) has no nontrivial solution. For these results, we use some known tools such as the direct
variational methods and the critical point theory.

This paper is organized as follows. The second section is devoted to mathematical preliminaries

and statement of main results. In the third section we give the mains results and thier proofs.
2. Framework and preliminary results. Solutions to boundary-value problem (1) will be
investigated in the space

E={u:[0,T+1z >R, u(0)=u(T+1)=0},

which is a T-dimensional Hilbert space [1], with the inner product

T
(u,v) = ZAu(k)AU(k) Yu,v € E.
k=0

The associated norm is defined by

lull = (Z !AU(k)2> :

k=0

Moreover, it is useful to introduce other norm on E:

1

m

T
U]y = (Z |u(l<:)|m> for m > 2. 3)
k=1

For any function h: [0,7]z — [2,400), we use the following notations:

h™ = min h(k) and hT = max h(k).
k€[0,T]z, k€[0,T]7,

In this paper, we study the boundary-value problem (1) assuming that the functions p,q and r
satisfy the following assumptions:

2<p <pt<r <rt<gq <q". 4)

We start with the following auxillary result, will be are used later.
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Lemma 2.1 [20]. (a) For any m > 2 there exists a positive constant Cy, such that

T T+1
D fu(k)™ < C > |Au(k — 1) Vu € E.
k=1 k=1

(b) There exist two positive constants C1 and Co such that

T+1
Z|Au DPED > |lullP” —Cy Yue E with |ul| > 1.

(¢c) There exists a positive constant Cs3 such that

T+1
Z|Au DPED > CollullP” Yue E with |jul| < 1.

() Z Y| Au(k — DPED < (T 4+ 1) (||u||10+ + 1) Vu e E.

Definition 2.1. We say that A > 0 is an eigenvalue of problem (1) if there exists w € E such
that u # 0 and

T+1 T
> Au(k = DPED2Au(k — Aok — 1) + > |u(k) PP 2u(k)o(k) +
k=1 k=1
T T
+ 3 [ulk) O Pu(k)o(k) = XY Juk)[ PP u(k)o (k)
k=1 k=1
forany v e E.

If A > 0 is an eigenvalue of problem (1), then the corresponding eigenfunction u) € F is a weak
solution for the problem (1).
To study the boundary-value problem (1), we define the following functionals, for u € E:

T+1 T T
= D1t~ DPEN -+ SO + S 5)
k=1 k=1
T
dow) = 3 Ju(k) ), ©)
k=1
T+1 _ T T
Bulk = DPED T u)p® | I fulk) o)
— Lt W2 LS 7
el =2 ) *; GRS IRT @
T
lu(k)|"¢
= 8
Zl ) (8)

and, for any A > 0 and u € E, we define the functional I as follows:
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Ix(u) = @1(u) = M (u). ©)

With any fixed A > 0 the functionals I is differentiable [11, 20], and its derivatives at u reads

(B, v) = (w1, v) = A (¥ @).v)., (10)
for any v € E, where
T+1
( ) Z|Au DPED=2Au(k — 1)Av(k — 1) +
b3 (PO + 2wl (an
k=1

and

(w1, v) = Du k) k). (12)

Remark2.1. According to equalities (10)—(12) and the Definition 2.1, it follows that A is an
eigenvalue of problem (1) if and only if there exists u) € E such that uy # 0 is a critical point of
the funtional 1.

3. Main results and thier proof. In this paper, we study the boundary-value problem (1)
assuming that the functions p, ¢ and r satisfy the hypothesis given in (4).

Theorem 3.1. Assume that the hypothesis (4) holds, then there exists a positive constant )\, such
that any X\ € (0, \y) is not an eigenvalue of the problem (1).

Proof. Put

. wo(u)
=t w

where ¢y and 1)y are given by (5) and (6).
Firstly, we show that A\, > 0. From (4) we infer that, for all k& € [1, Tz,

p(k) <r(k) < q(k),

then, for any v € F and k € [1,T]z, we have

(k)" < ()P + k)| 0. (14)
Then
T T
> () PO + () ®) = > Julh)"®),
k=1 k=1

and we deduce that
wo(u) > o(u) Yu € E.

Therefore,
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A >1>0.

Secondly, we show that any A € (0, A,) is not an eigenvalue of the boundary-value problem (1).
To do this, assuming by contradiction that there is A € (0, \,) an eigenvalue of problem (1), then by
Remark 2.1, we deduce that there exists u) € E such that uy # 0 and I:\(u,\) = 0. So,

(Sl v) = A (Wi (w).0) Ve B,

In particular, for v = u), we get
po(ux) = Mo (un).

Since wuy # 0, it follows that @g(uy) > 0 and 1g(uy) > 0. Then from (13) and the fact that
A < Ay, we deduce that

@o(ux) > Actbo(un) > Mbo(ur) = @o(u)-

This inequality is absurd, then the proof is completed.

Theorem 3.2. Assume that the hypothesis (4) holds, then there exists a positive constant \* such
that A, < X\* and each \ € [\*,+00) is an eigenvalue of the problem (1).

We need to prove the following lemmas which will be used to show the Theorem 3.2.

Lemma 3.1. [f the condition (4) is true, then

1m SOO(U)
llul|=0 o (w)

:—|—OO

Proof. Forany k € [1,T)z, we have r— < r(k) < r*. Then, for any u € E, we get
"

[u(k)["™) < (k)" + lu(k)

Summing for k from 1 to T, we obtain, for any u € F,

By using Lemma 2.1(a), we infer that

T+1 T+1
Yo(u) < (@ D Au(k = 1) +Cor Y |Au(k - 1)”) .
k=1

k=1

Again by Lemma 2.1(d), we deduce that

Yo(u) < (14 1) (Co (14 ull ™) + Cor (1 + [Ju] ™)) (15)
Next, for any u € E, with ||u|| < 1, from (5) and Lemma 2.1(c), we have
po(u) > Cs]lullP”. (16)
Then, for any u € E with |ju|| < 1, small enough, from the inequalities (15) and (16), we get
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po(w) o Cs [ '
Yo(u) = (L+T) Coe (T4 fJul"™) 4+ Cor (1 + [Jul|™)

Since r* > r~ > p', passing to the limit as ||u|| — 0, in the above inequality we prove that

. eo(u)
B0 7y = F
Lemma 3.1 is proved.
Lemma 3.2. [f'the condition (4) is true, then, for any A > 0, I is coercive, i.e.,

lim (1 (u) — M (1)) = +o.

l[ul| =00

Proof. For any u € E, from (7) we have

T+1 _ T T
SR Ak = DPED I k) p®) (k) P® Juk)]e®)
U D D R Dl 77 *;( (k) T k) )2
RIS Aulk — 1)[Pk=D 1 - PR 1 () 28) 17
2 5 2 lAutk - 1) +W;(w< PO + @) am

Let s fix such that r™ < s < ¢, then, for any v € E and k € [1,T)z, we get
(k) PH) + [u(k)[ 9P > Ju(k)]*,
and, by (17), we obtain

1

—_———|ul}. 18
max(2p*,q7) " 9

| T
pr(w) 2 > 1Au(k = DPEY 4
k=1

Next, since |u(k)|"® < (ju(k)["™ + |u(k)|""), then, from (8), we have

T T
dlu) < = <Z|u<k>|7" + me*) . (19)
k=1

k=1

By using Holder’s inequality, we prove that, for any u € F,

T T s\ s
> lutk) < T (Z(\u<k>v)“) = AJul;” (20)

k=1 k=1

and
T

d =t [ +\ 7F N +

St <75 (3 (k)T = Bl @1

k=1 k=1
where

s—r_ s—rt
A=T 5 >0 and B=T s >0. (22)
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Therefore, for any u € E with ||u|| > 1, from (11), inequalities (18)—(21) and Lemma 2.1(b),
we deduce that, for any A > 0,

1

1 - +
—|ul} — A\ — (A r Blul% )>
e e = A (Al B >

1 N
I(w) 2 - (Gullull”” — ) +

> CillullP” = Cy n |uls _)\A!U|§7 n
pt 2max(2p*,¢T) T

+
|ul$ _ )\B!UK

2max(2pt, ¢t) r— 7

S0,
Cl u P 02 — +
i) = = (apuly — glulz) - Gluls” — Blul), 3)
AX BX 1

herea = >0, 7= —>0and f= —————— > 0.

where o o >0, v - > (0 and 3 Smax(2p”, ) >

Let hy, ha: |0, 400[— R two real functions, given by
hi(t)=at™ —Bt5  and  ho(t) =~t" —Bt5 Yt > 0.

It is easy to show that h; and hy achieves its positive global maximums M; = h(t1) and My =

= hsa(t2), where
1 1
-\ = +\ 5= F
ar s—r yr s—r
1 < Bs ) >0 an 9 < Bs ) >0

Then we infer that hy(t) < M and ha(t) < My Vt > 0.
Therefore, for any v € E with |lul| > 1 and A > 0, from (23), we get that

Cil|ullP” — Cy
p+

In(u) > — My — M. (24)

Passing to the limit as ||u|| — oo in (24), we complete the proof of Lemma 3.2.
Proof of Theorem 3.2. Put

*x . P1 (u)
M= uef{:n—f{O} Y1 (u)” =

Step 1. We show that \* > 0.
By (14) and from (4), we infer that, for any v € F,
[u()P® - Ju(R) 15 JuR)[ ) Juk) ™)

O O O G

Then . . .
[u (k)P (k)| 1™ fu(k)"®)
y D 5 D s oy O

k=1 p( k=1 q< =1
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and
-
©1(u) > qul(U) Yu € E.
So,
* T.i
A > qj >0

Thus, step 1 is verified.

Step2. We show that each A € (A\*, +00) is an eigenvalue of the problem (1).

We fix A € (\*,4+00). According to Lemma 3.2, we have I is coercive and is weakly lower
semicontinuous. Applying Theorem 1.2 in [22] in order to prove that there exists u) € E as a global
minimum point of I and, thus, as a critical point of 7.

In order to finish the proof of step 2, it is enough to prove that w) is nontrivial. Indeed, since
A > A" and from (13) there exists vy € E such that

P1(va) < A1(va),

that is,
I)\(U,\) < 0,

Then u) # Og, and we conclude that there exists uy € E with u) # Og, which is a critical point of
I, or X is an eigenvalue of the problem (1). Thus, step 2 is true.

Step 3. We show that A* is an eigenvalue of problem (1). For this we will prove that there exists
u* € E such that u* # 0 and I, (u*) = 0.

Let A, > 0 be a minimizing sequence for \* (i.e., A\, > A\*). From step 2, we deduce that for
each n there exists a sequence {u,} € E such that u,, # 0 and I;\n (un) = 0. So,

(gp&(u,ﬁ,v) = An <1/1/1(un),v> Vv e E. (26)
For v = u,,, we find that

QOO(UTL) - )\nwO(un) = 07 (27)

and passing to the limit as n — 400 in relation (27), we have

lim (po(un) — Antho(uy)) = 0. (28)

n—-+o0o

On the other hand, a similar argument as those used in proof of Lemma 3.2, we show that

Hm  (po(un) — AMtho(uy)) = +o0. (29)

llun||—=+oo

Then, from (28) and (29) we show that the sequence {u,} is bounded in E. Since E is a finite
dimensional Hilbert space, then there exists a subsequence, still denoted by {u,} and v* € E, such
that u,, — u* as n — +o00.

Therefore, passing to the limit as n — +oc in relation (26), we get that

(¢1)0) =X (viw)w)  woeE
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or
<I;\* (u*),v) =0 VwvekFE.

So, u* is a critical point of Iy«.
It remains to show that u* is nontrivial. In fact, if not we have u,, — 0 in F as n — +oo or
||un|| — 0, then Lemma 3.1 implies that

. ®o(un) >
lim | ——= ] = +o0.
n—+00 (@Z)O (un)
From the equality (27), we deduce that

(20

n—+o0 \ Yo ()

which is a contradiction. Consequently, u* # 0 and, thus, A* is an eigenvalue of the problem (1).
Step4. We prove that A, < A*. Since A\* is an eigenvalue of the problem (1), so Theorem 3.1
implies that
A g oA

Since 0 < A*, therefore, A\, < \*.

Theorem 3.2 is proved.

Remark 3.1. We are not able deduce whether A, = A* or A\, < A*. In the latter case, an intersting
open problem consern the existence of eigenvalue of problem (1) in the interval [A, < A\*).
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