DOI: 10.37863/umzh.v73i2.88

UDC 517.5

R. Khani, Sh. Najafzadeh, A. Ebadian, I. Nikoufar (Payame Noor Univ., Tehran, Iran)

THE n-VALENT CONVEXITY OF FRASIN INTEGRAL OPERATORS n-ВАЛЕНТНА ОПУКЛІСТЬ ІНТЕГРАЛЬНИХ ОПЕРАТОРІВ ФРАЗІНА

Let f_i , $i \in \{1, 2, ..., k\}$, is an analytic function on the unit disk in the complex plane of the form $f_i(z) = z^n + a_{i,n+1}z^{n+1} + ..., n \in \mathbb{N} = \{1, 2, ...\}$. We consider the Frasin integral operator as follows:

$$G_n(z) = \int_0^z n\xi^{(n-1)} \left(\frac{f_1'(\xi)}{n\xi^{n-1}}\right)^{\alpha_1} \cdots \left(\frac{f_k'(\xi)}{n\xi^{n-1}}\right)^{\alpha_k} d\xi.$$

In this paper, we obtain a sufficient condition under which this integral operator is n-valent convex and get other interesting results.

Нехай $f_i,\ i\in\{1,2,\ldots,k\},$ — аналітична функція на одиничному диску у комплексній площині, яка має вигляд $f_i(z)=z^n+a_{i,n+1}z^{n+1}+\ldots,\ n\in\mathbb{N}=\{1,2,\ldots\}.$ Розглядається інтегральний оператор Фразіна вигляду

$$G_n(z) = \int_0^z n\xi^{(n-1)} \left(\frac{f_1'(\xi)}{n\xi^{n-1}}\right)^{\alpha_1} \cdots \left(\frac{f_k'(\xi)}{n\xi^{n-1}}\right)^{\alpha_k} d\xi.$$

Отримано достатні умови, за яких цей інтегральний оператор ϵ n-валентно опуклим, та інші цікаві результати.

1. Introduction. Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disk and let $\mathcal{A}(n)$ be the class of all analytic functions in \mathbb{D} of the form

$$f(z) = z^n + a_{n+1}z^{n+1} + \dots, \quad n \in \mathbb{N}.$$

So $\mathcal{A} := \mathcal{A}(1)$.

For $f,g\in\mathcal{A}$, we say that the function f(z) is subordinate to g(z), written by $f(z)\prec g(z)$, if exists an analytic function w(z) with w(0)=0, |w(z)|<1 for all $z\in\mathbb{D}$ such that $f(z)=g\big(w(z)\big)$. If g(z) is univalent in \mathbb{D} , then the subordination $f(z)\prec g(z)$ is equivalent to f(0)=g(0) and $f(\mathbb{D})\subseteq g(\mathbb{D})$.

A function $f \in \mathcal{A}(n)$ is said to be n-valent starlike functions of order β in \mathbb{D} , if it satisfies the inequality

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \beta, \qquad z \in \mathbb{D}, \quad 0 \le \beta < n, \quad n \in \mathbb{N},$$

and we denote this class by $S_n^*(\beta)$. If a function $f \in \mathcal{A}(n)$ satisfies the following inequality:

$$\Re\left(1+\frac{zf''(z)}{f'(z)}\right) > \beta, \qquad z \in \mathbb{D}, \quad 0 \le \beta < n, \quad n \in \mathbb{N},$$

then it is said to be n-valent convex functions of order β in \mathbb{D} and we denote this class by $C_n(\beta)$. It is known that $S_1^*(\beta) = S^*(\beta)$ and $C_1(\beta) = C(\beta)$ (the class of starlike functions of order β and convex functions of order β , respectively). These classes are subclasses of the class of univalent functions and, moreover, $C \subseteq S^*$ (see [3]), where C = C(0) and $S^* = S^*(0)$ (the class of convex functions and starlike functions, respectively).

For $f_i \in \mathcal{A}$ and $\alpha_i > 0$, $i \in \{1, 2, ..., k\}$, Breaz et al. in [1] introduced the following integral operator:

$$F_{\alpha_1,\dots,\alpha_k}(z) = \int_0^z \left(f_1'(\xi) \right)^{\alpha_1} \dots \left(f_k'(\xi) \right)^{\alpha_k} d\xi. \tag{1.1}$$

The most recent, Frasin [4] introduced the following integral operator, for $\alpha_i > 0$ and $f_i \in \mathcal{A}_n$, $i \in \{1, 2, ..., k\}$:

$$G_n(z) = \int_0^z n\xi^{(n-1)} \left(\frac{f_1'(\xi)}{n\xi^{n-1}} \right)^{\alpha_1} \dots \left(\frac{f_k'(\xi)}{n\xi^{n-1}} \right)^{\alpha_k} d\xi.$$
 (1.2)

2. Preliminaries. In order to give our results, we need the following corollary, which is due to E. Deniz [2].

Corollary 2.1. Let the function $f(z) \in \mathcal{A}(n)$ satisfies the inequality

$$\Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > \frac{2n-1}{2}.$$

Then

$$\Re\left(\frac{f'(z)}{z^{n-1}}\right) > \frac{n}{2}.$$

3. Main results. In this section, we formulate and prove main results.

Theorem 3.1. Let $\alpha_i > 0$ for all $i \in \{1, 2, ..., k\}$ and $f_i \in \mathcal{A}(n)$ such that

$$\Re\left[\frac{zf_i''(z)}{f_i'(z)} + 1\right] \ge \beta_i, \quad z \in \mathbb{D},$$

where $\beta_i \in \mathbb{R}$ and $\sum_{i=1}^k \beta_i \alpha_i < n$. If $\sum_{i=1}^k \alpha_i \le 1$, then G_n is n-valent convex function of order $\sum_{i=1}^k \beta_i \alpha_i$. Here G_n is the integral operator define as in (1.2).

Proof. From (1.2), we observe that $G_n \in \mathcal{A}(n)$ and obtain

$$G_n'(z) = nz^{n-1} \left(\frac{f_1'(z)}{nz^{n-1}} \right)^{\alpha_1} \dots \left(\frac{f_k'(z)}{nz^{n-1}} \right)^{\alpha_k}.$$

Differentiating the above expression logarithmically and multiply by z we get

$$\frac{zG_n''(z)}{G_n'(z)} = (n-1) + \sum_{i=1}^k \alpha_i \left[\frac{zf_i''(z)}{f_i'(z)} - (n-1) \right].$$

So, we have

$$\frac{zG_n''(z)}{G_n'(z)} + 1 = n + \sum_{i=1}^k \alpha_i \left[\frac{zf_i''(z)}{f_i'(z)} + 1 - n \right] =$$

ISSN 1027-3190. Укр. мат. журн., 2021, т. 73, № 2

$$= n + \sum_{i=1}^{k} \alpha_i \left[\frac{z f_i''(z)}{f_i'(z)} + 1 \right] - n \sum_{i=1}^{k} \alpha_i.$$
 (3.1)

Since $\sum_{i=1}^{k} \alpha_i \leq 1$, then by hypothesis we have

$$\Re\left[\frac{zG_n''(z)}{G_n'(z)} + 1\right] \ge \sum_{i=1}^k \alpha_i \Re\left[\frac{zf_i''(z)}{f_i'(z)} + 1\right] \ge \sum_{i=1}^k \beta_i \alpha_i. \tag{3.2}$$

Thus, $G_n(z)$ is *n*-valent convex of order $\sum_{i=1}^{\kappa} \beta_i \alpha_i$.

Theorem 3.1 is proved.

Corollary 3.1. Let $\alpha_i > 0$ for all $i \in \{1, 2, ..., k\}$ such that $\sum_{i=1}^k \alpha_i \leq 1$. If $f_i \in C_n(\beta_i)$, then G_n is n-valent convex function of order $\sum_{i=1}^k \beta_i \alpha_i$.

Proof. Since $f_i \in C_n(\beta_i)$, then $0 \le \beta_i < n$ and so $0 \le \sum_{i=1}^k \beta_i \alpha_i < n$. Therefore by using the relation (3.2), the proof of this theorem is obvious.

If we put n = 1 in Theorem 3.1, then we get the following corollary.

Corollary 3.2. Let $\alpha_i > 0$ for all $i \in \{1, 2, ..., k\}$ and $f_i \in A$ such that

$$\Re\left[\frac{zf_i''(z)}{f_i'(z)} + 1\right] \ge \beta_i, \quad z \in \mathbb{D},$$

where $\beta_i \in \mathbb{R}$ and $\sum_{i=1}^k \beta_i \alpha_i < 1$. If $\sum_{i=1}^k \alpha_i \leq 1$, then $F_{\alpha_1,\dots,\alpha_k}$ is the convex function of order $\sum_{i=1}^k \beta_i \alpha_i$. Here $F_{\alpha_1,\dots,\alpha_k}$ is the integral operator define as in (1.1).

Corollary 3.3. Let $\alpha_i > 0$ for all $i \in \{1, 2, ..., k\}$ such that $\sum_{i=1}^k \alpha_i \leq 1$. If $f_i \in C(\beta_i)$, then $F_{\alpha_1,...,\alpha_k}$ is convex function of order $\sum_{i=1}^k \beta_i \alpha_i$. **Theorem 3.2.** Let f_i be in the class \mathcal{S} . If r>0 satisfies the inequality

$$\frac{r^2 - 4r + 1}{1 - r^2} \sum_{i=1}^{k} \alpha_i > 0$$

such that $\sum_{i=1}^k \alpha_i \leq 1$, then $F_{\alpha_1,\ldots,\alpha_k}$ is convex univalent function in the disk |z| < r.

Proof. It is known that $f_i \in \mathcal{S}$, then for $z = re^{i\theta}$

$$\Re\left[\frac{zf_i''(z)}{f_i'(z)} + 1\right] > \frac{r^2 - 4r + 1}{1 - r^2}.$$

Since $\sum_{i=1}^{k} \alpha_i \leq 1$, then we get

$$1 + \sum_{i=1}^{k} \alpha_i \Re\left[\frac{zf_i''(z)}{f_i'(z)}\right] \ge \sum_{i=1}^{k} \alpha_i \Re\left[\frac{zf_i''(z)}{f_i'(z)} + 1\right]. \tag{3.3}$$

If we put n=1, in equation (3.1) and use of the hypothesis of this theorem and applying relation (3.2), then we get that the integral operator $F_{\alpha_1,\dots,\alpha_k}$ is the convex function.

Theorem 3.2 is proved.

Theorem 3.3. Let $\alpha_i > 0$ for all $i \in \{1, 2, ..., k\}$. Also, let $f_i \in \mathcal{A}$ such that

$$\left[\frac{zf_i''(z)}{f_i'(z)} + 1\right] \ge \beta_i, \quad z \in \mathbb{D},$$

where $\beta_i \in \mathbb{R}$, $\sum_{i=1}^k \beta_i \alpha_i < 1$ and $\sum_{i=1}^k \alpha_i \leq 1$. Assume that $g(z) = a + b_n z^n + b_{n+1} z^{n+1} + \dots$ is analytic in \mathbb{D} . If

$$g(z) + \frac{zg'(z)}{c} \prec F_{\alpha_1,\dots,\alpha_k}(z), \quad z \in \mathbb{D},$$
 (3.4)

for $\Re(c) \geq 0$, $c \neq 0$, then

$$g(z) \prec q_n(z) \prec F_{\alpha_1,\dots,\alpha_k}(z), \quad z \in \mathbb{D},$$
 (3.5)

where $q_n(z) = \frac{c}{nz^{c/n}} \int_0^z t^{c/n-1} F_{\alpha_1,\dots,\alpha_k}(t) dt$. Moreover, the function $q_n(z)$ is convex univalent and is the best dominant of (3.4) in the sense that $g \prec q_n$ for all g satisfying (3.4) and if there exists q such that $g \prec q$ for all g satisfying (3.4), then $q_n \prec q$.

Proof. It is known [5] that the subordination (3.4) with convex univalent right-hand side is sufficient for (3.5) with the best dominated $q_n(z)$. By Theorem 3.1 the function $F_{\alpha_1,...,\alpha_k}$ is convex univalent in the unit disk and we get the result.

Theorem 3.4. Let $f_i \in \mathcal{A}(n)$, $\alpha_i > 0$ for all $i \in \{1, 2, ..., k\}$ and $\sum_{i=1}^k \alpha_i \leq 1$. If

$$\sum_{i=1}^{k} \alpha_i \Re\left[\frac{z f_i''(z)}{f_i'(z)} + 1\right] \ge \frac{2n-1}{2},\tag{3.6}$$

then

$$\Re\left[\prod_{i=1}^{k} \left(\frac{f_i'(z)}{nz^{n-1}}\right)^{\alpha_k}\right] > \frac{1}{2}.$$

Proof. Since $\sum_{i=1}^{k} \alpha_i \leq 1$, then by relation (3.1) we have

$$\Re\left[\frac{zG_n''(z)}{G_n'(z)}+1\right] \ge \sum_{i=1}^k \alpha_i \Re\left[\frac{zf_i''(z)}{f_i'(z)}+1\right].$$

We know that the integral operator $G_n(z) \in \mathcal{A}(n)$. So, by using Corollary 2.1 and applying equation (3.6), we get

$$\Re\left(\frac{G_n'(z)}{z^{n-1}}\right) > \frac{n}{2}.$$

Therefore,

$$\Re\left[\prod_{i=1}^{k} \left(\frac{f_i'(z)}{nz^{n-1}}\right)^{\alpha_k}\right] > \frac{1}{2}.$$

Theorem 3.4 is proved.

We put n = 1 in Theorem 3.4, then we get the following corollary.

ISSN 1027-3190. Укр. мат. журн., 2021, т. 73, № 2

Corollary 3.4. Let $f_i \in A$, $\alpha_i > 0$ for all $i \in \{1, 2, ..., k\}$ and $\sum_{i=1}^k \alpha_i \leq 1$. If

$$\sum_{i=1}^{k} \alpha_i \Re\left[\frac{z f_i''(z)}{f_i'(z)} + 1\right] \ge \frac{1}{2},$$

then

$$\Re\left[\prod_{i=1}^k \left(f_i'(z)\right)^{\alpha_k}\right] > \frac{1}{2}.$$

If we take k=1 in Corollary 3.4, then we obtain the following result.

Corollary 3.5. If
$$f \in C(1/2)$$
 and $0 < \alpha \le 1$, then $\Re (f'(z))^{\alpha} > \frac{1}{2}$.

References

- 1. D. Breaz, S. Owa, N. Breaz, *A new integral univalent operator*, Acta Univ. Apulensis. Math. Inform., **16**, 11-16 (2008).
- 2. E. Deniz, On p-valent close-to-convex starlike and convex funtions, Hacet. J. Math. and Stat., 41, № 5, 635-642 (2012).
- 3. P. L. Duren, Univalent functions, Springer, New York (1983).
- 4. B. A. Frasin, *New general integral operators of p-valent functions*, J. Inequal. Pure and Appl. Math., 10, № 4, Article 109 (2009), 9 p.
- 5. D. J. Hallenbeck, St. Ruscheweyh, *Subordination by convex functions*, Proc. Amer. Math. Soc., **52**, 191–195 (1975).

 Received 15.05.18