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EXISTENCE OF THREE WEAK SOLUTIONS
FOR FOURTH-ORDER ELASTIC BEAM EQUATIONS ON THE WHOLE SPACE

ICHYBAHHA TPHbOX CJIABKUX PO3B’A3KIB PIBHAHb
MPYXHOI BAJIKM YETBEPTOI'O MOPSJIKY B YChOMY ITPOCTOPI

Multiplicity results for a perturbed fourth-order problem on the real line with a perturbed nonlinear term depending on one
real parameter is investigated. Our approach is based on variational methods and critical point theory which are obtained
in [G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal., 75, 2992 -3007 (2012)].

BuBueHO pe3yabTaTH KpaTHOCTI it 30ypeHoi 3amaui 4eTBepTOro MOPsAKY Ha AiMCHIN mpsmii i3 30ypeHuM HenmiHiiHUM
JIOAAHKOM, IO 3aJISKUTh BiJl OJHOTO AilicHOTO mapamerpa. [linxin 6a3yeTbcs Ha METOAaX Bapialliif Ta Teopil KpUTHIHUX
TOYOK, 10 oTpumaHi B [G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal., 75,
2992-3007 (2012)].

1. Introduction. In this paper we consider the following problem:
u(x) + Au”(x) + Bu(z) = Ma(z).f(u(z)) ae. xz€R, (Py)

where A is a real negative constant and B is a real positive constant, A is a positive parameter
and o, f: R — R are two functions such that a € L*(R), a(x) >0, forae. € R, a Z 0
and also f is continuous and nonnegative. It is known that fourth-order problems are important in
describing a large class of elastic deflections. Hence, many researchers have studied the existence and
multiplicity of solutions for fourth-order two-point boundary-value problems. We refer the reader to
[4—-6, 8—10]. In [4], while A and B are real constants, using variational methods and critical point
theory, multiplicity results for the fourth-order elliptic problem,

u'’ + Au" + Bu = \f(t,u), te]0,1],
(1.1)

by condition on the nonlinear term was established, while in [8], applying the Morse theory, the
existence of three solutions to problem (1.1), with A = B = 0, were discussed. Problems such as
(Py) that are discussed on the whole space, occur naturally in a variety of settings in physics and
material scinces, as in, for example, the study of mathematical models of deflection of beams. These
beams which appear in many structures, deflect under their own weight or under the influence of
some external forces.

Due to the lack of compactness of the operators on whole space, the study of such problems is
very important. Because, in such cases the operators which solve the problem are not regular enough
in comparison to operators which arise in problems on bounded domains. Due to this, for example,
we can not aplly [3] (Corollary 3.1) for the problem (P)). In the present paper, using one kind of
critical point theorem obtained in [1] which we recall in the next section (Theorem 2.1), we establish
the existence of at least three nonnegative weak solutions for the problem (Py). In fact, in presenting
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Theorem 3.1, which one of the main results of this paper, we aplly the requirement ( non-standard
Palais — Smale condition for functional I, which is the functional related to the problem (Py)) based
on Theorem 2.1.

2. Preliminaries. Let us recall some basic concepts.
We denote by |.|; the usual norm on L!(R), for all ¢+ € [1,4oc] and it is known that W22(R) is
continuously embedded in L!(R) for each ¢ € [2, +00].

The Sobolev space W22(R) is equipped with the following norm:

1/2
[ullw22r) = /(lull(ﬂﬂ)l2 + U/ (2) [ + Ju(@)*)dz
R
for all u € W22(R). Also, we consider W22(R) with the norm
1/2

[[ull = /(IU”(I)I2 — Al (2)* + Blu(2)[*)dz
R

for all u € W22(R). According to
: 1 1
(min{1, ~ A, BY) ully (s < [l < (max{1, A, B3 ull o).

the norm ||.|| is equvalent to the norm |[.||yy2.2(r). Since embedding W?22(R) — L*®(R) is continu-
ous hence there exists a constant C'y p (depending on A and B) such that

uoo < Capllull Yue WHA(R).

In the following proposition, we provide an approximation for this constant.
Proposition 2.1. We have

[ufoo < Ca,llull (2.1

N
where Cy p = <4AB> .

Proof. Let v € WHL(R), then from [7, p. 138] (formula (4.64)), one has

o)l < 5 [ WOl (22)
R

Now if u € W22(R), then v(z) = (—AB)z|u(z)[> € WL(R) and, thus, from (2.2) and Hélder’s
inequality one has

(—AB)|u(z)|* < / (—AB)Z [/ (t)|[u(t)|dt < ((—A)7|u']2)(B2 [ul2),
R

that 1s,
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@) < () (AU B ) @3

Now according to z%y' =% < a*(1 —a)'"%*(z+y), z, y > 0, 0 < a < 1 [7, p. 130] (formula (4.47))
1 1 -1 1
and classical inequality a» + br < 2% (a 4+ b)r, from (2.3) one has

1

u<x>s<;;)i(;>é / AP + Hz BlutPae| | <
G |

[awr s s | <
R
= (QZ) [ @p - awoF + BuwPa |
R

[ SIS

N[

which means that |u|o < Cy gllu.
Let ®,¥: W22(R) — R be defined by

)= 2l = [ (@) — AW @P + Blu@) P @)
R
and
W) = / a(x) F(u(z))dz 25)
R

for every u € W22(R), where F(t) = / f(&)d¢ for all t € R. Since F'(t) = f(t) > 0 for

0
all t € R so F' is an increasing function. The functional ¥ is well defined because for every
u € W22(R) we have

W(u)] < /a(w) mas{— F(—[u]o), F(|ul) bz < +o0.
R

It is known that W is a differentiable functional whose differential at the point v € W22(R) is

V' (u)(v) = lim Wlu+ S”S) — P _ %\If(u + sv)

- / () (u() (),

R

s=0

and @ is a continuously Gateaux differentiable functional and in a similar way, whose differential at
the point u € W2(R) is

&' (u)(v) = /(u”(x)v"(x) — Ad'(2)v'(x) + Bu(z)v(z))dx
R

for every v € W22(R).
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Definition 2.1. Let ® and V be defined as above. Put Iy = ® — AU, A > 0. We say that
u € W22(R) is a critical point of Iy when I}(u) = Ogy22ry+y, that is, Iy(u)(v) = 0 for all
v € W22(R).

Definition 2.2. A function w: R — R is a weak solution to the problem (Py) if u € W22(R)
and

/(u”(az)v”(z) — Ad/ (z)v'(x) + Bu(z)v(x) — Ma(z) f(u(x))v(z))dr =0
R
for all v e W?2(R).

Remark2.1. We clearly observe that the weak solutions of the problem (P,) are exactly the
solutions of the equation I} (u)(v) = ®'(u)(v) — AW/ (u)(v) = 0. Also if « is, in addition, a
continuous function on R then each weak solution of (P)) is a classical solution.

Lemma 2.1. [f'ug # 0 is a weak solution for problem (Py), then ug is nonnegative.

Proof. From Remark 2.1 one has, I} (ug)(v) = 0 for all v € W*2(R). Choose v(z) = @y =
= max{—ug(x),0} and let M = {z € R: wup(z) < 0}. Then we have

(ug (x)tg () — Aug()tig(x) + Buo()tio(x))da = / Aa(z) f(uo(x))uo(z)dz,
MUMe MUMe

that is,

- /( ag(2)* — Alag()]* + Blio(2)[*)dz = /Aa(x)f(uo(w))ﬂo(w)dw >0
M M

which means that —||@g||? > 0 and one has @y = 0. Hence —ug < 0, that is, ug > 0 and the proof
is complete.

Definition 2.3. A Gdtuax differentiable function I from Banach space X to R satisfies the
Palais — Smale condition (in short (PS)-condition) if any sequence {uy} such that

(a) {I(upn)} is bounded,
(b) limpsqoo [[I'(un)|[x» =0 Vn €N,
has a convergent subsequence.

Below, we will present a non-standard state of the Palais—Smale condition that is intro-
duced in [1].

Definition 2.4 (see [1]). Fix r €] — 00, +00]. A Gdtuax differentiable function I from Banach
space X to R satisfies the Palais—Smale condition cut off upper at r (in short (P.S )M -condition) if
any sequence {u,} such that

(a) {I(upn)} is bounded,
(b) limp s po0 |1 (un) [ x+ = 0,
(c) ®(uy) <7 VneN,

has a convergent subsequence.

Our main tool is the following critical point theorem.
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Theorem 2.1 ([1], Theorem 7.3). Let X be a real Banach space, and let &,V : X — R be
two continuously Gdteaux differentiable functions with ® bounded from below and convex such that

inf & = ®(0) = ¥(0) = 0.

r
Assume that there are two positive constants 11,79 and w € X, with 2r; < ®(u) < 52, such
that

(by) SPue® " (—ocn) U(u) 20(a).
! r 30’
(by) SPue = (—ocra) V(u) 10(u)
2 T 30(w)
Assume also that, for each
T2
3 (IJ(E) . 1 5
AEA=|=-——=, min ) )
2 \I/(u) SUPyed—1(]—co,r1[) \I](u) SUPyued—1(]—o0,r2]) \Ij(u)

the functional ® — \V satisfies the (PS)"-condition and

telf(l)fl] U(tu; + (1 —t)ug) >0

for each uy,uy € X which are local minima for the functional ® — AV and such that V(u;) > 0
and V(uz) > 0.

Then, for each A € A, the functional ® — \V admits at least three critical points which lie in
1] - 00,73,

Now we present one proposition that will be needed to prove the main theorem of this paper.

Proposition 2.2. Take ® and VU as in the Definition 2.1 and fix A > 0. Then I, = & — \U
satisfies the (PS)!"-condition for any r > 0.

Proof. Consider sequence {u,} C W?2(R) such that {I)(u,)} is bounded,

limy, s 4 o0 [[ 13 (un) [lw22(r) = 0 and®(u,,) < r Vn € N. Since ®(u,) < r, we have §||un\|2 <r

and so {u,} is bounded in W22(R). Therefore passing to a subsequence if necessary we can as-
sume that u,(z) — u(z), = € R (from the compact embedding W?2(R) — C([-T,T]),T > 0)
and {u,} weakly converges to u in L>(R) (from the continuous embedding W22(R) — L*®(R))
and, hence, there is s > 0 such that |u,(z)] < s for a.e. € R and for all n € N. Here, it
is useful to note that the subsequence {u,} converges weakly to u in W?2(R) and we want to
show that this subsequence is strongly converging to u in W22(R). For this purpose, according to
Lebesque’s dominated convergence theorem since avf (un (7)) < o maxe<s f(€) € L'(R) for all
n € N and f(un(z)) — f(u(z)) for a.e. z € R (f is continuous function), one has af(uy) is
strongly converging to af (u) in L'(R). Now since u,, — u in L®°(R) and af(u,) — af(u) in
LY(R) C (L*(R))* then from [2] (Proposition 3.5(iv)), one has

lim /a(m)f(un(:c))(un(x) —u(z))dz = 0. (2.6)

n—-+o0o
R

From limy, s o0 [|[ 1} (un)|lw22r)« = 0, there exists a sequence {e,,}, with e, — 0T, such that
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/(u;;(;c)v”(:p) — Auy, (2)0'(2) + Bun(x)v(2) — Aa(z) f (un (2))v(z))dz| < en 2.7)
R

un(x) — u(z)

for all n € N and for all v € W22(R) with |lv|| < 1. Putting v(z) = ” H
Uy — U

, from (2.7)

one has

/(UZ(w)(UZ(:B) —u"(x)) = Auy, (2) (up () — 0/ (2)) + Bun () (un(z) — u(z))—

=) f (un(2)) (un(2) — u(@)))de| < enllup — ull (2.8)

. . . 1 1
for all n € N. Now according to inequality |a||b| < §\a|2 + 5]()[2 we have

/(Uii(w)(ux(l‘) —u"(2)) = Auy, () (uy, () — /() + Bun () (un(z) — u(z)))dz =

R

~ [(@F = A @) + Blun(z) Py~
R
- [ o (@)~ A @) (@) + B o)) >
R
> ul? = [ (G + G @ = GAl @ - SAW @ + 3 Blun o)+

1 1 1 1 1
—5Bmmw)m=nwW—QWMP—JWP:QWWP—JWW
Hence from (2.8), we obtain

Sl = Sl < 3 [ o) (un @) () = )} + enlfun — .
R

that is,

sllunll < 51ul? + A [ a(e) (un(e))un(e) = u(@)de + eullun —ull. @9)
R

Taking into account (2.6), from (2.9) when &, — 07, we have

lim sup ||up| < |lul|.
n—+o00

Thus, [2] (Proposition 3.32) ensures that u,, — u in W22(R).
Proposition 2.2 is proved.
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3. Main results. Before presenting the main theorems of this section, we introduce notations
that are related to some constants that will appear in the main results of this section. Put

2048 32 13 \ !
— (=22 2244 2B
K < o7 04T 10 > ’

5
/8 a(z)dx
_ 78 _ %
E= = , and, hence, FE <1,
/a(a:)da; ol
R

1
2\” E
h:CA7B <k> and I = ﬁ’

where Cy4 p is given in Proposition 2.1. Now we express the main results.

Theorem 3.1. Assume that there exist three positive constants n, 01 and 0 with 20, < \/inh <
< Oy such that
F0,) _2,F(n)

i Z7

(i) 52 <3l

(ii) Fo:) 1 rm
0,2 "3

Then, for each

3 1 1 7? , 1 6,2 1 1 6,2
- - 5 min y = s
41a)1Cf g I F(n) 2la10F g F(61)" 4 |ahCF 5 F(62)

Ae N =

the problem (Py) admits at least three distinct nonnegative weak solutions u; € W22(R) such that
|Uiloo < b2, 1=1,2,3.

Proof. Our aim is to apply Theorem 2.1, to problem (P,). Fix A, as in the conclusion. Take
X = W22(R) and ® and ¥ as in the previous section. We observe that the regularity assumptions
of Theorem 2.1 on ® and ¥ are satisfied and also according to Proposition 2.2, the functional Iy
satisfies the (PS)[")-condition for all r > 0.

Put

2 2
S S
L 2 CA,B ’ 2 2 CA,B
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1 _
—GTT] <:):2—i:r>, if ze€ _0,:},
n, if xe€ §, 5} ,
w(z) = 188 (3.1)
64n (5, 5 1 . 15
- — = - f -1
9(:): 4:1:—1—4>, 1 x€_8,},
0 otherwise.
We clearly observe that w € X and, in particular,
1 1
P(w) = §||w\|2 =5 /(Iw"(%)l2 — Al (@) + Blw(z)*)dz =
R
2048 32, 13 n”? 1/ ngh \?
2
g ( 27~ 9° 10 > k 2(0,4,3)
Therefore, using the condition 20; < v/2nh < 65, one has, 2r; < ®(w) < ;—2
Now for each u € X and bearing (2.1) in mind, we see that
Y] —oo, ) ={ue X;®(u) <ry} =
1 1 6\
ue Xl < 5 (CA’B>
={u e X;Csllull <0;} C{uec X; |ulo <0i},
and it follows that
sup U(u) = sup /a(az) F(u(z))dx <
u€d~1(]—o0,ri[) uE@‘l(}—oo,ri[)R
< /a(x) sup F(&)dx = |aly  F(6;).
€1<0;
R
Hence, we have
SUP,ecd—1(1—oor ) Y(U F(6 F(6 1
1

1 o 1 01
2\ Can

On the other hand, one has

ol F(w(z) da a(x)F(n)dx
()F( ())d Qﬁ () (77) OzoF(??)

2
> = —
2\ Can 2\Can 2\Can
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EF(n) 4
W —lohCinsl

F(n)
772

4
= §|O‘|IC§LB
Now from (3.2) and (3.3) we have

SUPyed—1 (|00, ) Y (1) - 2 ¥(w)
1 3P (w)

~—

Analogously, from (3.3) we get

.
N

2Supuei)*l(]foo,rg[) \P(u) < 2‘0&‘1F(92) _ 4‘0&|1C§13F(92)
2 o 1 92 2 ’ 922
2\ CaB
which means that
SUPyed—1(]—oc0,r2[) lIl(u) < l‘ll(w)
) 3P(w)’

Hence, (b;) and (b2) of Theorem 2.1 are established.

1705

(3.3)

3.4

Now, if u1,us € W22(R) be two local minima of the functional I, = ® — AW, with ¥(u;) >0

and ¥(ug) > 0, then according to Lemma 2.1, u; and ugy are nonnegative, and we get

inf W(tu; + (1 —t)uz) > 0.
t€[0,1]

Finally, for every A € A’ C A (see (3.2)-(3.4)), Theorem 2.1 (with = = w) and Lemma 2.1

guarantee the conclusion.
Theorem 3.1 is proved.
Now, we present the following example to illustrate Theorem 3.1.

Example3.1. Suppose that f: R — R is continuous and nonnegative function and

395
1 ifre |-, -
) I {878]7

0 otherwise.

a(z) =

Let A= —1 and B = 1, then we have

1
86111\ ! 2 86111 2
k= s CAB = \fa h = )
1080 : 2 1080

E=1,

Also let n = 1, 6; = 0.001 and 02 = 20. So the condition 26; < V2 nh < 6 is satisfied.

Now if
0.001 1

720
86111

1000000 [ f(&)dé < ——— [ f(&)dE
i /

0
and

1
1 360

20
o | F€ds < oy [ f@ae,
0

0
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then according to Theorem 3.1 for each

86111 . 0.000004 800
Ae 1 » TN 0.001 » T 20
180 / F(€)de / fode | pe)de
0 0

0

problem

wi*(z) = u(z) + u(z) = Aa(z) f(u(x)), = € R,
(3.5)
u(—00) = u(+00) =0

has at least three nonnegative weak solutions wu; such that |u;|c < 20,7 =1,2,3.
Remark3.1. For example, in problem (3.5) we can consider

18000 ¢, ift <1,
f(t) :== ¢ —1800000 ¢ + 1818000, if 1 <t<1.01,
0, if t > 1.01.

Now, we point out the following existence result, as consequence of Theorem 3.1.
Corollary3.1. Let f: R — [0,+o00[ be a continuous and nonzero function such that

o 1O _ oy [O
51—1>I(§1+ & ggrfoo £ 0
Then, for each A > \*, where
3 n? f
A = inf : 0, d 0
o 4lal,C3 5T /nf(g) d¢ " O/f@) -
0

the problem (Py) admits at least three distinct nonnegative weak solutions.

7
Proof. Suppose that A > \* is fixed. Let > 0 such that / f(&)d¢ >0, and
0

3 172

A > 5 7 :
bl [7 1 e
0
§
7(6) fwa
Then from limg_,+ ¢ = 0 we have limg_,g+ 0572 = 0 and there is ¢; > 0 such
01
, O 1 G
that 26, < +/2nh, and < . Also fi li o= =0 h.
at 260, V2nh, an e 2‘04‘10317]3/\ so from limg_, ¢ we have
3 02
f(t)dt ft)dt
lim§_>+000£72 = 0 and there is 6, > 0 such that /2 nh < 6y and OT <
2
1
< ———5—- Now we can apply Theorem 3.1 and the conclusion follows.
4laf1CF pA
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2 1080
Example3.2. Let n = 1, A= —1and B =1 and so Cup = ‘Qf and [ = Sos. Also
1 R
suppose that f(z) = 22" and o(z) = T2 and hence |a|; = /OO mdm = m. Therefore
: 86111
according to Corollary 3.1 for each A > — 1N problem
240w (1 — >
e
. 2 —u(x)?
u(z) —u(z) + u(x) = )\%, r € R,

1+ 22
u(—00) = u(+o00) =0

admits at least three nonnegative classical solutions.
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