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DIFFERENTIAL AND INTEGRAL EQUATIONS
FOR LEGENDRE - LAGUERRE BASED HYBRID POLYNOMIALS

JANO®EPEHIIAJIBHI TA IHTEI'PAJIBHI PIBHSHHSA
JJISAA T'TBPUHUX ITOJITHOMIB HA BA3I INIOJITHOMIB JIEZKAH/IPA - TIAT'EPPA

In this article, a hybrid family of three-variable Legendre — Laguerre — Appell polynomials is explored and their properti-
es including the series expansions, determinant forms, recurrence relations, shift operators, followed by differential,
integro-differential and partial differential equations are established. The analogous results for the three-variable Hermi-
te — Laguerre — Appell polynomials are deduced. Certain examples in terms of Legendre — Laguerre — Bernoulli, —Euler and
—Genocchi polynomials are constructed to show the applications of main results. A further investigation is performed by
deriving homogeneous Volterra integral equations for these polynomials and for their relatives.

PosmisHyTo ribpuaHy cim’to moainoMiB Jleskanapa —Jlareppa— Ammesist Ta BCTAHOBJICHO iXHi BIACTHBOCTI, SIKi BKIIFOYAIOTh
po3KIaau psAAiB, GOPMH AETEPMIHAHTIB, peKYPEHTHI CIIBBIIHOIICHHS, OIIEPATOPH 3CYBY, 3a SKUMH HIyTh nudepeHiiaabai
Ta iHTerpo-AudepeHLianbHi piBHAHHS, a TaKOK AU epeHiaabHi PiBHAHHS 3 YaCTUHHUMHE NoxinHuMu. [loniOHi pesynpratu
orpumaHo st noniHoMiB Epmita —Jlareppa— Anmens 3 Tppoma 3MiHHUMH. Y TepMmiHax noiiHomiB Jlexxanapa—Jlareppa —
Bepuymni, —Einepa Ta — I>xeHOKKI MOOYyIOBaHO AEsKi MPHKIAaIH, MO0 MOKA3aTH 3aCTOCYBaHHS OCHOBHHX PE3YNIBTaTiB.
Jaui, a7st UX Ta MOB’A3aHUX 3 HUMHU MOJIHOMIB OTPHUMAHO OJHOPiJHE iHTerpaibHe piBHsIHHSA Bombreppa.

1. Introduction and preliminaries. The study of differential equations is a wide field in pure and
applied mathematics, physics and engineering. The mathematical theory of differential equations first
developed together with the sciences where the equations had originated and where the results found
applications. Differential equations play an important role in modeling virtually every physical,
technical, or biological process, from celestial motion to bridge design, to interactions between
neurons. We recall the following definitions.

Let {pn(z)}52, be a sequence of polynomials such that deg(p,(z))=n, n € No := {0,1,2,...}.
The differential operators ©,, and O satisfying the properties

@;{pn(l’)} :pn—l(x)a @’;"Ij{pn(w)} :pn—I—l(x)? (1-1)

are called derivative and multiplicative operators, respectively. The polynomial sequence {p,(x)}22,
satisfying equation (1.1) is then called quasimonomial.

The derivative and multiplicative operators for a given family of polynomials give rise to some
useful properties such as

(01O {Pn(@)} = pul2),  (O7_107 5...0507O7 ){po(2)} = pu(x).  (1.2)

The technique used in obtaining differential equations via (1.2) is known as the factorization
method [12, 13]. The main idea of the factorization method is to find the derivative and multiplicative
operators such that equation (1.2) holds. The factorization method can be equivalently treated as
monomiality principle. The monomiality principle [7] and the associated operational rules are used
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in [8] to explore new classes of isospectral problems leading to nontrivial generalizations of special
functions.

The Appell polynomial sequences [2] arise in numerous problems of mathematics, physics, and
engineering. The set of all Appell sequences is closed under the operation of umbral compositions
of polynomial sequences and forms an abelian group. The Appell polynomial sequences are defined
by the generating function

R =" Raly). (1.3)
n=0 ’

The power series R(t) is given by

t t2 tn o0 tTL
R(t):R0+I!R1+2!R2+"'+H!R”+”':ZOR”M’ Ro, # 0,
e

with R;, i = 0,1,2,..., real coefficients. The function R(¢) is an analytic function at ¢ = 0 and
for any R(t), the derivative of R,,(y) satisfies

I

R,(y) =nRn-1(y).

The Appell polynomial sequences are defined by the series expansion

Raly) =) <Z> Riy" " (1.4)

k=0

For the suitable choices of the function R(t), different members belonging to the family of Appell
polynomials can be obtained. These members and their related numbers are given in Table 1.1.

The Bernoulli and Euler numbers appear in the Taylor series expansions of trigonometric and
hyperbolic tangent and cotangent and trigonometric and hyperbolic secant functions, respectively.
The Genocchi numbers appear in counting the number of up-down ascent sequences and graph and
automata theories.

We know that the generalized special polynomials provide new means of analysis for the solution
of large classes of partial differential equations often encountered in physical problems. Most of the
special functions of mathematical physics and their generalizations have been suggested by physical
problems. Some of these special polynomials are listed below.

The two-variable Laguerre polynomials (2VLP) L, (x,y) [10] are defined by means of the gene-
rating equation

o9] tn
e Colat) = Ln(w,9) . (15)
n=0 ’

where Cy(xt) is the 0" Tricomi function [1] defined by the operational definition
n
Co(ax) = exp (—aD;l){l}, D "{1} = x—' is inverse derivative operator. (1.6)
n!

The Tricomi function Cy,(x) is defined by the series expansion
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Table 1.1. Certain members belonging to the Appell family

Name of the
S.No.|polynomial and| R(t) Generating function Series expansion
related number
t s t
vt — B b
Bernoulli (et _ 1) ¢ nz:% n(y) | )
polynomials | ¢ " 00 | g _ N
" and numbers | 1 (et — 1) =Y B.(=B,(0) = Bu(1) () 2 kY
[1] "= 1 ! -
BO:LBl:ii,BQ:(;
( 2 ) . i ( )tn
Euler eVt — En(y)— "o
t | .
| Ppolynomials 2 € t+ 1 . n=0 n! En(y) =) <k') %
and numbers | et 41| _2€" g (—onp 1\ t° k=0 N
Eof]‘;El:OaE2*71 2" 2
2t o tTL
Genocchi <t+1> eyt — Z Gn(y)—'
i € nl n
polynomials . n=0 _ n .
Il | and numbers tQt 2 Z o= G (0))ﬁ Gnl(y) ];) <k‘) Gry
[4,14] | ¢ T e T & =
Go=0,G1=1,Gy=~-1
e k ..k
(=D"
Col®) =D i mr 1.7
(@) kzok!(n—kk:)! (1.7)

The series expansion and operational representation for the 2VLP L, (z,y) are given by [10]

kknk

() —n'z o (1.8)

Ln<x,y>=exp< D, 18){ "} (1.9)

Next, the two-variable Legendre polynomials (2VLeP) S,,(z,y) [9] are specified by means of the
generating equation

eVt Cp(—2t?) = ZS Zy (1.10)

The series expansion and operational representation for the 2VLeP S,,(z,y) are given by [9]

[%]

Zk Yy
Sn(z,y) = 2 —(k') (2R (1.11)
_ —1 82 n
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Remark1.1. In fact, from equations (1.6) and (1.10), we find that S, (z,y) = H,(y, D;1),
where H,(y, D;'!) are the two-variable Hermite Kampé de Feriet polynomials defined by [3]

0
—1,9 .
eyt+D2 5 _ ZHn(ya Dz 1)7

To introduce the multivariable hybrid polynomials and to characterize their properties via dif-
ferent generating function methods is an interesting approach. These polynomials may be useful in
certain problems of number theory, combinatorics, numerical analysis, theoretical physics, approxi-
mation theory and other fields of pure and applied mathematics. This gives motivation to introduce
a new hybrid family of three-variable Legendre —Laguerre — Appell polynomials (3VLeLAP). The
series expansion, determinant form, recurrence relations, shift operators and differential equations
for these polynomials are derived. Certain applications are framed in order to give the results for
the three-variable Legendre — Laguerre — Bernoulli, — Euler and — Genocchi polynomials. The integral
equations for the Legendre — Laguerre — Appell and other hybrid polynomials are also established.

2. Legendre — Laguerre based hybrid polynomials. First, we introduce a hybrid family of the
three-variable Legendre — Laguerre polynomials (3VLeLP) by making use of replacement technique
and slightly focus on proving some properties related to these polynomials.

Expanding the exponential function and replacing the powers of y, that is y"*, n = 0,1,2,...,
by the polynomials Sy (z,y), n = 0,1,2,..., in equation (1.5) and then using equation (1.10), we
get the following generating function for the 3VLeLP:

The 3VLeVP gL, (x,z,y) are defined by means of the generating function

e Co(xt)Co(—2t%) = ZSL x,z y 2.1

Using equations (1.5) and (1.7) or (1.10) and (1.7) appropriately in equation (2.1) and after
simplification, we get the following series expansions for the 3VLeLP gL, (x,y, 2):

(/2] k n ko
Ln—Qk(xay)Z (_1) x Sn—k(zay)
Ly(z,z,y) =n! e =n! , 22
skn(@,2,y) =n kzo (n — 2k)! (k1)2 or = kzo (n — k) (k)2 @2)
which in view of equations (1.8) or (1.11) can also be expressed as
k+2i<n ! k ,n—k—2l
Z(—z)"y
Ly(x,z,y) =n! .
sLa(@,z,y) =n kzz;’o (n— Kk — 20)! (k1)2(11)2

Using equations (1.9) and (1.11) or (1.12) and (1.8) appropriately in equation (2.2) gives the
following operational representations for the 3VLeLP gL, (z, z,y):

stz =ow (<02 0 ) is) (or —ew (D21§;>{Ln<x,y>}>,

which on using equations (1.12) or (1.9) can also be expressed as

- A
SLn(33727y):eXp <Dz18y2_ xlay>{y }
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Now, we introduce a hybrid family of 3VLeLAP via generating function, series expansions and
determinant definition. For this, we prove the following results.

Theorem 2.1. The 3VLeLAP are defined by the generating function

o0 tn
R(t)e¥ Co(at)Co(—2t*) = > (1 Rn(x, 2, Y (2.3)
n=0

Proof.  Expanding the exponential function e¥! and then replacing the powers of y, i.e.,
vyl y?, ..., y" by the polynomials sLo(z,2,y), sLi(z,2,9),..., sLn(x,2,5y) in the left-hand
side and y by the polynomial gL;(z, z,y) in the right-hand side of equation (1.3) and after summing
up the terms in the left-hand side of the resultant equation, we have

ZSL T,z y ZR (sLi(z, 2z y))t

n=0

n

which on using equation (2.1) in the left-hand side and denoting the resultant 3VLeLAP in the
right-hand side by ., R, (z, 2, y) that is
SLRn(xvzay) = R?’L{SLl(va’y)}a (24)

we get generating function (2.3).
Theorem 2.2. The 3VLeLAP are defined by the series expansion

n n/2]

k.l
stRn(z,z,y) =nl) nf k_m% )Ek:')Q)(ZZ!)?' )

k=0 [=0

Proof. Using equations (1.3) and (1.7) in the left-hand side of equation (2.3) and applying
the Cauchy-product rule and then comparing the coefficients of like powers of ¢"/n! gives series
expansion (2.5).

Theorem 2.3. The 3VLeLAP of degree n are defined by

1
SLRO(Ia Z7y) = /87)

0
SLRn<$7 <, y) =
1 SLl(l“aZ,?/) SLQ(x>Z7y) SLn—l(vaay) SLn(.’E,Z,y)
BO ﬁl 32 v ﬁnfl ﬁn
0 Bo G) B (n I 1)5n—2 <Tll> Bn-1
(="
= n+1 s (26)
(Bo) 0 0 n—1 n
Bo ( 5 >5n—3 <2>5n—2
0 0 0 Bo (n " 1)51

wheren =1,2,..., Bo,B1,...,0n ER, By #0.
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Proof. Replacing the powers ¢°, ', 4%,...,y" by the polynomials gLo(x,z,%),
sLi(x,z,y),..., sLy(z,2,y) in the right-hand side and y by the polynomial gL;(x,z,y) in the
left-hand side of determinant definition of the Appell polynomials ([6, p. 1533], (29), (30)) and then
using equation (2.4) in the left-hand side of resultant equation, we obtain determinant definition (2.6).

Further, we focus on obtaining recurrence relations and shift operators for the 3VLeLAP
sLRn(z, z,y). For this, we prove the following results.

Theorem 2.4. The 3VLeLAP (1 R,(x,z,y) satisfy the recurrence relation

sLRnt1(z, 2,y) = (y + a0 — D;l)sLRn(% z,y)+
_ "~ n
+2nDz 1SLRn—1(IB7 Z7y) + Z <k> (073 SLRn—k(‘T7 Z, y)7 (27)
k=1

where the coefficients {ay }ren, are given by expansions

[e.e]

RI(t) tk
R0 - kzzoak” (2.8)

Proof. We consider generating function (2.3) in the form

(DD _ N £
R(t)e ¥ * — ZSLRn(x7zay)ﬁ7
n=0 ’

which on differentiating both sides with respect to ¢ and using equations (2.3) and (2.8) and then
applying the Cauchy-product rule in the left-hand side of the resultant equation, it follows that

o0 oo

ZosLRn-i-l(xa ZﬁU)ﬁ = ZO ((Z/ +ap — Dgl)sLRN('x7 Zvy)+
_ "\ /n t"
+2nD [ Ry—1(w, 2,y) + kZ:l <k> ar sLRn—i(2, 2, y)> ok

Equating the coefficients of like powers of ¢"/n! on both sides of the above equation yields
recurrence relation (2.7).
Theorem 2.5. The shift operators for the 3VLeLAP (1 Ry (z,z,y) are given by

1
v Lo =Dy, (2.9)
_ 1
oky = ——Da, (2.10)
1y
2Ly = D' D.. 2.11)
" (6%
_ — k
yEF =y+ao— D' +2D'Dy + EDZ’ (2.12)

k=1
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n
L5 =y +ag—D;' —2D7' D, + > (—~1)FE Dk

o Ds 2.13)
k=1 ’

n
(6]
LLE =y +ag— Dyt + 2D +Zk—fD;kD’;. (2.14)
k=1

Proof. Differentiating both sides of generating relation (2.3) with respect to y and then simpli-
fying it follows that

~ 1
vEn{stRn(z, 2,y)} = 5Dy{sLRn(ﬂc,z,y)} = LRn-1(z, 2,9), (2.15)

which proves assertion (2.9).
Again, differentiating both sides of equation (2.3) with respect to = and on simplification, we
find

-1
oL {stRa(2,2,9)} = —Daf{sLRn(2,2,9)} = sLRn1 (2, 2,9), (2.16)

which gives assertion (2.10).
Further, differentiating both sides of generating function (2.3) with respect to z and after simpli-
fication of the resultant equation, we get

_ 1 _
z"En {sLRn(xaz7y)} = EDy 1DZ{SL,R'TZ($727?J)} = SLRn—l(‘Tazay)a (217)

which yields assertion (2.11).
Using equation (2.15) in the relation

SLRnfk(xv 2 y) - (£T_L,k+1£;,k+2 e "67;—1"67;) {sLRn(x7 2, y)}a (218)
gives

(n—k)!
n!

SLRn—k’(xvz7y) = DS{SLRn(x7zay)} (219)

Making use of equation (2.19) in recurrence relation (2.7) and in view of the fact that

’EX{SLRn(va?y)} = sLRn—l-l(xazay), (220)

we obtain
"
_ _ k
yfz{sLRn(vaay)} = (y—f—OéO - Dxl +2‘Dz 1Dy + Zk"DIgj> {SLRn(x7Z7y)} =
k=1

= sLRn+1(x7 2, y)7

which proves assertion (2.12).
In order to derive the expression for raising operator (2.13), we use equation (2.16) in rela-
tion (2.18) and on simplification, we have
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(n—k)!

n! D’;{sLRn(xwzvy)}?

SLRn—k(:U> 2, y) = (_1)k
which on using in recurrence relation (2.7) and taking help of relation (2.20) gives

:E£7_‘1_{SLRn(x> 2y y)} =

n

_ _ Qg

= <y+a0_Dx1 _2Dz 1D$+Z(_ kk‘ Dk) {SLR €,z y)} :SLRn+1(x7z7y)7
k=1

which proves assertion (2.13).

Similarly, using equation (2.17) in relation (2.18) and after simplification it follows that

(n—k)!
n!

SLRn—k’(xazay> = Dy_le;{sLRn(xazay>} (2.21)
Further, in view of equations (2.21), (2.7) and (2.20), we get
zog:{sLRn(xa 2y y)} =

(y—f-(l()—D +2D +Z A ka) {sLRn('r?Z7y)} :SLRH+1(x7Z7y)7
k=1

which led to assertion (2.14).

Next, we establish the differential, integro-differential and partial differential equations for the
3VLeLAP (R, (z, 2,y).

Theorem 2.6. The 3VLeLAP (1 Ry(x, z,y) satisfy the differential equation

<xyD§ — (x —y)Dy — gDy — 22D, Z %k Dk+1 + n> I Ra(x,2,y) = 0. (2.22)

Proof. Consider the factorization relation
Lo Lo siRu(@,2,9)} = sLRn(x, 2,y). (2.23)
Now, making use of operators (2.9) and (2.12) in above equation and taking help of the relation
(y— D;")Dy = —ayD; + (x —y)Dy, Dy = D.zD,

we are led to differential equation (2.22).
Theorem 2.7. The 3VLeLAP .1 R,(x, z,y) satisfy the integro-differential equations

((y + ag)D, — 2D + Z kak DI“Jr1 + n) sLRn(z,2,y) =0, (2.24)

((y +ag— Dt + 2D;1)Dz +)° %D;’“D’j“ —(n+ 1)Dy> o Rn(z,2,9) =0.  (2.25)
k=1

Proof. Using expressions (2.10), (2.13) and (2.11), (2.14), respectively, in relation (2.23) give
integro-differential equations (2.24) and (2.25).
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Table 2.1. Result for 1R, (z,y, D; 1)
S.No. Result Expression
1 —1,2 t"
I generating yt+D M o () — L, p-HL
function c o(@t) = uln(@,y. D )n!
I series R D1y 'i [”z/% Ron—i—o21(D7 1) (—z)*y!
n x? ) z =n
definition | " Y 2 2o (i — k— 20)! (k12 (I1)2
HLRn+1(x7ya D.;l) = (D;1 + Qo — D;I)HLRH(SC,Z,/, Dzl) +
I recurrence " /n )
relation +2nD; " LRy (z,y, DY) + Z <k> ak gL Rn—k(z,y, D7)
k=1
_ 1
Dz—l "ETL 715DD271
wf; =-—D,
1"
gL = fD*1 D,
IV | shift operators Dzu{’ =D;'+ay— D, 1Jr2D 1DD 1 +Z D‘1
k=1
+ . _p-1_9p-1 n_ kK nk
oL =y+ag— Dyt —2D;1D, + ) (1) ) Ds
k=1
sk =D a0 =Dy +2D 1 + 3" 2Dk D)
k=1
<1‘D21Dg — (= D;"YDy — agDp-1 — 2yD,, —
v differential :
equat]on - Z Dk‘-tll 4 'I'l> HLRn (I’, v, D;l) _ O
((D ' +ao)D, — 2D, + Z ) DE n) iRy, DY) = 0
integro-
VI differential ((D;1 +ag— D' +2D, 1) D, + Z D, Dk“
equations
_ (n + 1)DD21>HLRn (I’,y, D; ) =0
((D;l + ) Dy D, —2D) 7 +
- ak n n
+I;(— )k Dy DL 4 D )HLR (z,y,D71) =0
partial- B ) )
Vil differential <(Dz1 +ao — Dgl)Dgz—lDy + (n+ Q)DZ;Dy + 2DZ:—1D@/ +
equations n

Ok yn— ~k pk+1_
E —D D
+ 2 7

“n+ )D”“)HLR (2.9, D-1) = 0
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Theorem 2.8. The 3VLeLAP (1R, (x, z,y) satisfy the partial-differential equations

((y +00)DID, — 2D 4> (—1)F k’f DDREFL nD”> LRz, 2,y) =0, (2.26)
k=1

<(y +ao— DY )DyD, + (n+2)Dy~ "D, + 2Dy D.+
+Z D” FDEFL _ (n + 1)D;+1>SLRn(x,z,y) = 0. (2.27)

Proof. Differentiating equation (2.24) n times with respect to z and equation (2.25) n times
with respect to y, respectively, yields assertions (2.26) and (2.27).

Remark2.1. From Remark 1.1 we conclude that the 3VLeLP gL, (z, z,y) reduce to the three-
variable Hermite — Laguerre polynomials (3VHLP) gL, (x,y, D;!). In view of this fact, we find that
the 3VLeLAP R, (z,z y) reduce to the three-variable Hermite — Laguerre — Appell polynomials
(3VHLAP) 1 Rn(x,y, D7 1). We present the results for 3VHLAP in Table 2.1.

We note that by taking o = 0, k = 0,1,...,n, in the results derived above, we can easily find
the corresponding results for the 3VLeLP gL, (z,2,y) and 3VHLP gL, (x,y, D; ). Thus, we omit
them.

In the next section, certain examples are constructed as applications of the results derived above.

3. Applications. @ We study the analogous results for some members of the 3VLeLAP
sLRn(z, z,y) by considering the following examples.

Example3.1. Taking R(t) =

; and R, (y) = By(y) in generating function (2.3) of
e J—

the 3VLeLAP (1R, (x, z,y), we find the three-variable Legendre — Laguerre — Bernoulli polynomials
(3VLeLBP) .1, B, (z, z,y), which are defined by the generating function

(ett_l)eytco(xt )Co(— Z (z, 2 y t

n

The other results for the 3VLeLBP ;B (z, z,y) can be obtained by making the substitutions

Rn(y) = Bu(y), R(t) = t so that R(1) S i Bna (1) "
n=0

et —1 (t) n+1 n!
B 1 1 1
= ap= _;J:(l) (n>1), ao = —3, T

in equations (2.5), (2.7), (2.9)—(2.14), (2.22) and (2.24) - (2.27). We present these results in Table 3.1.

The determinant definition of the 3VLeLBP .1, B, (z, z,y) can be obtained by substituting 5y = 1
and B; = ZJ%,
als reduce to the Bernoulli polynomials [5, 6]) in determinant definition (2.6) of the 3VLeLAP
sLRn(z,2,y).

1 = 1,2,...,n, (for which the determinant definition of the Appell polynomi-
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Table 3.1. Results for .7, By (z, 2,y)
S.No. Result Expression
n_[n/2] k.l
. .- n k— 2l )( I) 4
I series definition sLBn(z,2,y) = n'z Z (n— k= 20)! (k)2 (12
k=0 1=0
1
SLBn+1(x7Z)y) = (y - 5 - Dw_l) SLBn(xazvy) +
II recurrence relation +2Z;‘Dz_ sLBn- 1(5; 125 Y)—
Bi+1(1
;( ) k—f— 1 SLank(xvzay)
ydn = ﬁDy
1
£, =—=D,
"
- -1
L= —Dy D,
1 Bi41(1)
i LY =y—>—-D;'+2D;'D, ——2D¥
111 shift operators ytn Y 5 + Z ES
1 - Bry1(1)
WLf=y—5 - D' —2D7'D, = Y (—-1)F Dk
; D ]
Lo e Bea(1) -
L=y — - —Dyl 2Dt -y L pokpE
n Yy 9 T + Yy 1; (k+1)! Y z
9 1
xyD; — (r —y)D, + §Dy —2zD, +
v differential equation " B
k+1( ) k+1
—— Dy B, =0
+Z(k+1) +n ) srBnla,2,y) =
-~ |D,—2D;! -
((r-3)
& Bi41(1)
—Z kkJrl DAY 4 ) 1 Ba(z,2,4) =0
V |integro-differential equations 1
(k+1 y z Y |s
1 - Bj41(1)
- - )p"D, — 2D ! )k e S DDk
((y 5 ) DD —2Dr = S (- G DDk
k=1
+ nDZ)SLBn(;v,z,y) =0
VI | partial-differential equations

(630

By (1
_Z (k+1)!

1>D;;DZ +(n+2)D}7'D, + 2D 'D, —

D” FDM _ (n 4 1)D;+1)SLBn(x,z,y) =0
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2
et +1
the 3VLeLAP (1 R,(x,z,y), we find the three-variable Legendre—Laguerre—Euler polynomials
(3VLeLEP) . E,(z,z,y), which are defined by the generating function

Example3.2. Taking R(t) = < > and R, (y) = E,(y) in generating function (2.3) of

n

2 ¢ 2y _ =
(et n 1>ey Co(xt)Co(—2t) = TLZ:%SLE,L(L z,y)a.

The other results for the 3VLeLEP .1 E,(z, z,y)) can be obtained by making the substitutions

* o R &
Rn(y) = En(y)7 R(t) - et +1 so that R(t) - 2} 2 nl

&, 1 1 1< /n
= an:? (nzl), ()40:—5’ 051:*5 (gn:%;<k>En—k)

in equations (2.5), (2.7), (2.9)-(2.14), (2.22) and (2.24) — (2.27). We present these results in Table 3.2.
The determinant definition of the 3VLeLEP .1 E,(x, z,y) can be obtained by substituting 3y = 1

1
and §; = 2 1 =1,2,...,n (for which the determinant definition of the Appell polynomials reduce
to the Euler polynomials [6]) in determinant definition (2.6) of the 3VLeLAP R, (x, z,y).
2t
E le3.3. Taking R(t) = | ——
xample aking R(t) <et+1
3VLeLAP  R,(x,z,y), we find the three-variable Legendre—Laguerre —Genocchi polynomials
(3VLeLGP) .Gy (z, z,y), which are defined by the generating function

) and R,,(y) = Gn(y) in generating function (2.3) of the

tn
a-

2t =
(et n 1>€yt00(35t)00(—2t2) = Z sL.Gnl(z, 2,7)

n=0

The other results for the 3VLeLGP G, (x, z,y) can be obtained by making the substitutions

2t R(t) _ <~ Gut"
n - n Y - h R 2 nl
Ro(y) = Gnly),  R(t) = G757 sothat 2o z% 2 !

= ap=—7 (n>2), ap=1, a;=-1

in equations (2.5), (2.7), (2.9)—(2.14), (2.22) and (2.24) —(2.27). We present these results in Table 3.3.
The determinant definition of the 3VLeLGP .G, (x, z,y) can be obtained by substituting Sy = 1

and f; = , ©=1,2,...,n (for which the determinant definition of the Appell polynomials

1
2(i+1)
reduce to the Genocchi polynomials) in determinant definition (2.6) of the 3VLeLAP (R, (x, 2,y).

In view of Remark 2.1, we note that the corresponding results for the three-variable Her-
mite — Laguerre — Bernoulli, —Euler and —Genocchi polynomials 1By (2, 2,vy), ,.En(z,2,y) and
w1.Gn(z, z,y), respectively, can be obtained easily. Thus, we omit them.

In the next section, we derive the Volterra integral equations for the 3VLeLAP and for their
relatives.
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Table 3.2. Results for (1 Ep(x, 2,y)

S.No. Result Expression
" By (o)
I series definition sLEn(z,2,y) = n'kz;) lz; (n— % — 20)! (K02 (12

1
SLEn+1($7Z>y) = (y - 5 - D;l)SLEn(fE,Z,y) +

II recurrence relation "\ &
+2nD;13LEn71(xvzay) +Z 75LEn7k(va7y)
= \k/ 2

_ 1
£, =——D,
"
Ly = -D;'D.
1
I shift operators vdy =y = 5~ D;' +2D;'Dy + Z 2 kl
£+ ,:y_l_D—1_2D—1D +Z(_1)kﬁ k
T 2 @ 2 e 2 k!

1
£ri=y—=—-D;'+2D, Dk Dk
: L i+ +;2k'

1 ~ &
<xyD§. —(x—y)D, + §Dy —2zD, — Z —lesz +

2 k!
v differential equation k=1

+ n)gLEn(va7y) =0
yfl D —2D*1+i(f k& DL 4
2)7" & 2 k!
k=1
+ n)SLEn(l‘,Z,y) =0
1 1 1 —k nk+1
((y_2_D$ 20y )D +ZQI<:' b -
—(n+ ].)Dy)sLEn(iL', z,y) =0
y_l DnD”_QDn—l_,'_i:(_ k gk DnDk+1
2 o z — 2 k!

+ nDZ)SLEn(x, z,y) =0
VI | partial-differential equations ( (

V |integro-differential equations

1
y- 5 - D;1>D§;DZ +(n+2)Dy~'D; + 2Dy D, +

+ Z 5 k'Dn k‘Dk‘-‘rl (TL + 1)D;L+1>SLE7L(‘I’ Z7y) =0
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Table 3.3. Results for ;.G (z, 2,y)

S.No. Result Expression
N8 Goaly) (o)t
I series definition <LGn(z, 2,y) —n'kzo lz; (= — 20)! (W2 (12

SLGyH»l(-'I;,Z,y) = (y+1_ ;1)SLGn($,Z,y)+
+2nD;Y G 1 (2, 2, y)+

II recurrence relation
+Z< ) sLGn—k(z,2,Y)
_ 1
gLy = EDy
1
2Ly, =——D;,
) n
£, ==-D;'D,
n
I shift operators yEr=y+1—D;'+2D;'D, + Z 5 k'
+ -1 —1 k Gk k
LY =y+1-D;'—2D;'D, + 2(71) Ta
LY i=y+1—-D; 42D 1+sz' S FDE
2 Gk k+1
2yDZ — (x —y)Dy — Dy — 22D, z 5 k:'D +
v differential equation
+n>5LG,,,(x,z,y) =0
s G
((y+ 1)D, —2D; ' + Z(— kQ ]:'Dk"’l +n)sLG (z,2,9) =0
V |integro-differential equations ((y +1-D;'+ 2Dy D + Z 5 k:' k Dk+1

—W+UDOﬂﬂM%%w=O

n Gk;
1)DD, —2D7! —1)F =S DIDET 4
(w+np2p, —2t S0

+ ’/lDZ) sLGn(gjv 2, y) =0
VI | partial-differential equations
<(y +1- D;I)DZDZ + (n+ 2)D;’*1DZ + 2D$*1Dz +

; Z SEDIEDE (kDD ) G 20) =0

4. Volterra integral equations. Integral equations arise in many scientific and engineering
problems, such as diffraction problems scattering in quantum mechanics, conformal mapping and
water waves etc. In order to further stress the importance of integral equations, we derive the integral
equations for the 3VLeLAP by proving the following result.
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Theorem 4.1. The 3VLeLAP satisfy the homogeneous Volterra integral equation

¢y) = - (zyD2 — (v — y)Dy — 22D, + n) x

(O (o (R RTES

(2 2 (x— -2z n)(y — )
v 0/ (- (D2~ (2 =)D~ 22D 4 )y - )+ 22 ) e

Proof. We consider the following second order differential equation of the 3VLeLAP:

o 1
(Dg + Dy = o (ayDi + (2 = y) Dy + 22D n)) st R, 2,9) = 0.

By taking help of equations (1.3), (1.4) and (2.3), we deduce the initial conditions

L Ra(,0,5) = 1 Rn(,1) ZZ( )( )(—1)%”7?:@/”—’“—7",

r=0 k=0

d

@{SLRH($, 0, y)} =

n—1ln—r—1
—r—1 AR
R0 =0y >0 (") (T T R

r=0 k=0

Now, consider

Di{ L Ru(z,2,y)} = 6(y)

which on integrating using initial conditions (4.3) and (4.4) gives

Dy{sLRn(az, z, y)} =

forgae eSS (T (T e,
0

r=0 k=0

sLRn(, 2, y) /¢ d§2+22( )( )(—D’”Rkﬁy”—k-’”.
r=0 k=0 ’

Use of expressions (4.5) and (4.6) in equation (4.2) led to integral equation (4.1).

4.1)

4.2)

(4.3)

(4.4)

(4.5)

(4.6)
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o . 1 Bo(1 1
Remark 4.1. By substituting the values of coefficients g = —5 0= 2(1) =13 and

2
Ry = By, in integral equation (4.1), we find that, for the 3VLeLBP .1 B, (z, z,y), the following
homogeneous Volterra integral equation holds true:

o(y) = —12(353/]_7926 —(x—y)Dy — 22D, + n) X

n—1n—r—1
n—1\/n—-r—1 z"
—1)" B, n—k—r—1
x(nz 0()( R L

n—1ln—r—1
n—1 n—r—1 T z" n—k—r—1
Y Y < ) )( : >(_1> By +

+/ (—12(xyD§ — (@ —y)Dy — 22D + n) (y— &)+ 6) ¢(&)de.
0

_ . 1 & 1
Remark 4.2. By substituting the values of coefficients oy = =t a1 = ?1 =5 and R, = E},

in integral equation (4.1), we find that, for the 3VLeLEP (1 E,(x, z,y), the following homogeneous
Volterra integral equation holds true:

¢(y) = —2(zyDi — (x — y) Dy — 22D + n) x

n—1n—r—1
n—1\/n—-r—1 x"
“1YE n—k—r—1
X<nz I G (S Vi

+ [ (~2(ewD? - (@ =)D, ~ 2D, 4 )y~ €) + 1) @),
0

Remark 4.3. By substituting ag = 1, oy = —1, and Ry, = G}, in integral equation (4.1), we find
that, for the 3VLeLGP ;G (z, 2,y), the following homogeneous Volterra integral equation holds

o(y) = f(xyDi —(x—y)Dy — 22D, + n) X

n—1ln—r—1 rn—k—r—1
n—1\/n—r—1 x
1) < n—k—r—1
X<nz O O [ L
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Y
+ [ (- @yD2 ~ (@ =)Dy~ 22D+ m) y - ©) ~ 1) ()i
0

To study the combination of operational representations with the integral transforms and their
applications to the theory of fractional calculus for the 3VLeLAP (R, (z, 2,y) and for their relatives
will be taken in further investigation.
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