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IMPROVED YOUNG AND HEINZ OPERATOR INEQUALITIES
WITH KANTOROVICH CONSTANT

BJIOCKOHAJIEHI OITIEPATOPHI HEPIBHOCTI SIHTA 1 XAWHIIA
3 KOHCTAHTOIO KAHTOPOBHUYA

We present numerous refinements of the Young inequality by the Kantorovich constant. We use these improved inequalities
to establish corresponding operator inequalities on a Hilbert space and some new inequalities involving the Hilbert — Schmidt
norm of matrices.

OTpuMaHO psiJi TOKpallleHb HEepiBHOCTI SHra 3a gonmomororo koHcTaHTH KaHTtopoBuua. Lli mokparieHi HEpiBHOCTI BH-
KOPUCTOBYIOTBCS IJIsl BCTAHOBJICHHS BIJIIOBIJHUX ONEPAaTOPHUX HepiBHOCTeH y mpoctopi ['inpbepra Ta HEsIKMX HOBHUX
HEepiBHOCTEH, 0 BKIIOYal0Th HOpMH [ ins6epra — Llmiara ams MaTpub.

1. Introduction and preliminaries. Let M, ,(C) be the space of m x n complex matrices and
M, (C) = M,, ,(C). Let ||.|| denote any unitarily invariant norm on M, (C). So, ||[UAV || = ||A]| for
all A € M,(C) and for all unitary matrices U,V € M, (C). The Hilbert—Schmidt and trace class
norm of A = [a;;] € M, (C) are denoted by

2 n

1Al = [ D_s3(A) ] o AL =) si(A),
j=1

J=1

where s1(A) > s2(A) > ... > s,(A) are the singular values of A, which are the eigenvalues of the
positive semidefinite matrix | A |= (A*A)%, arranged in decreasing order and repeated according
to multiplicity. For Hermitian matrices A, B € M, (C), we write that A > 0 if A is positive
semidefinite, A > 0 if A is positive definite, and A > Bif A— B > 0.

Let a,b > 0 and 0 < v < 1. Young’s inequality for real numbers states that

a’b'"" <wva+(1-v)b (1.1)

with equality if and only if @ = b. This inequality has numerous applications in various fields.
Young’s inequality and its reverse have received renewed attention in recent years and a remarkable
variety of refinements and generalizations have been found (see, for example, [1, 2, 8, 9, 15, 17]).
Zhao and Wu in [15] obtained refinements of the Young inequality and its reverses in the follo-
wing forms:
if 0 < v <1/2, then

va+ (1= > b +v(va—ve)* +ri(Vab— Vb)’,
va+ (1— )b < a’b'™ + (1 —v)(va— vb)* —r (Vab— Va)?;

if 1/2 <v <1, then

(1.2)
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ya+(1—u)b2a”b1_”+(1—u)(\f—\/5)2—1-7“1(\4/67—\/1;)2,

(1.3)
va+ (1—v)b<a’b'™" + y(\f— \/5)2 — Tl(\‘l/a» - \/&)2,
where 7 = min{v, 1 — v} and r; = min{2r,1 — 2r}.
A multiple-term refinement of Young’s inequality presented in [12] as follows:
a’b'™" 4+ Sy (v;a,b) < va+ (1 —v)b, (1.4)

where Sy (N;a,b) is the following nonnegative function:

N . )
Zsj(y)< N2 k() gk () _ A/ gk )+ 1p20 7k (1)1 )2'

=1

The Kantorovich constant is defined as

t+1)2
K(t,2):( +1) for ¢>0.
4t
Zuo et al. in [17] improved the classical Young’s inequality (1.1) via the Kantorovich constant as
follows:
aVyb=va+ (1 —v)b> K(h,2)"a"b!™" (1.5)
b

for all v € [0, 1], where 7 = min{r,1 — v} and h = —.
a
Liao and Wu in [9] gave refinements of inequalities (1.2) and (1.3) with the Kantorovich constant:
if 0 < v <1/2, then

va+ (1 —v)b> l/(\ff \/5)2 + 7“1({1/(77 \/5)2 + K((l/ﬁ, 2)f1a”b1_l’; (1.6)
if 1/2 <wv <1, then
va+(1—v)b> (1-v)(Va—vb) +ri(Vab—vb)* + K(Vh,2)"a"b' ™", (1.7)

b
where h = —, 7 = min{r,1 — v}, r1 = min{2r,1 — 2r} and 7; = min{2r;,1 — 271 }. Using the
Kantorovich constant a refinement of (1.4) given in [13] as follows:

b By (V)
K<\[ 2) @V 4 S (via,) < vat (1— )b (1.8

where Oy (v) is a special function which defined therein.
The Heinz means are defined as follows:

aubl—u 4 al—uby
2

It is easy to show that the Heinz means interpolate between the geometric mean and the arithmetic

H,(a,b) =

mean:
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b
Vab < H,(a,b) < “‘; . (1.9)

The second inequality of (1.9) is know as the Heinz inequality for nonnegative real numbers.
Let A, B € B(H) be two positive operators, v € [0, 1]. The v-weighted arithmetic mean of A

and B, denoted by AV, B, is defined as AV, B = (1—v)A+vB. If A is invertible, the v-geometric
mean of A and B, denoted by Af, B, is defined as

Af,B = A2(A2 BAZ ) Az,

The Heinz operator mean is defined by

A4, B + At B
HV(A, B) — jjl/ +2 ﬁl v ,
where A and B are two invertible positive operators in B(H).

Zuo et al. in [17] show that the inequality (1.5) admits an operator extension

AV, B > K(h,2)" A, B

for positive operators A, B on a Hilbert space.
Bakherad et al. in [1] proved that if » > 0 or v < —1, then

AV_,B< A} ,B.
In [9], the authors have presented operator versions of inequalities (1.6) and (1.7) on a Hilbert
space and corresponding inequalities with the Hilbert — Schmidt norm.

Let A be positive operator acting on a Hilbert space H and A € [0,1]. Holder—McCarthy
inequality states that

(Az,x)) > (A z,z) for all unit vectors z € H.

It is known that the Holder — McCarthy inequality and the Young inequality are equivalent, e.g.,
[5] (§3.1.3).
Fujii and Nakamoto in [4] proved that for A > 0 and 0 < p, v <1 the following refinement of
the Young inequality:
1—
uA+1—,u—A“zmin{l'u,'u}(VA#—l—y—A”)
v

is also equivalent to the following refinement of the Holder — McCarthy inequality

" . v
1— (A, ) > min 1—p , H _ (A, 2) for unit vector .
(Az, z)H 1-v'v (Az, x)v

For more information on the equivalent between Holder—MecCarthy inequality and Young in-

equality, the reader is referred to [4] and the references therein.
Sababheh and Moslehian in [13] obtained several multiterm refinements of Young type inequali-
ties for both real numbers and operators. They also proved the following operator inequality:

Bn (V)
K(zN/M’ 2> At, B+
m
N

+ Z 5 () (Aba, ) B + Algr-ia, () B — 24ls-i0,) B) < AV, B
7j=1
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for the positive operators m/ < A, B < M1I, where s;(v) and o;(v) are special functions which
have been defined therein.

In this paper, we present numerous refinements of the Young inequality by the Kantorovich con-
stant that improve several known results. We use these improved inequalities to obtain corresponding
operator inequalities on a Hilbert space. Moreover, some new Young type inequalities involving the
Hilbert— Schmidt norm are established.

2. Main results. 2.1. Several refinements of the Young inequality. First of all, we state a
refinement of the weighted arithmetic-geometric mean inequality for n positive numbers, which was
shown by Pecari¢ et al., see [10, p. 717] (Theorem 1) and [3].

Lemma 1. Let x1,...,x, belong to a closed interval I = [a,b], a < b, p1,...,pn > 0 with
Zii p; =1 and \ = mln{pl, yDn}. If f is a convex function on I, then

sz zi) (szxz> >n>\z =~ fla:) - (iél‘)

Before exposing the main results, we state the following corollary from Lemma 1, which we will
use in what follows. .
Corollary 1. If x; € [a,], 0 < a < b, pi,...,pn > O with » b= 1and A =
1=

= min{p1,...,pn}, then
1 ni

> :
. Dixq = Z._ Li
=1 > n i=1 .

n ; n 1
I\ I e
i=1 i=1""

Suppose that f is a real convex (concave) function on [0, 1] and n € NU {0}.
Let Agp =1[0,1], Ap; =1[27"4,27"(i+1)) forn=1,2,3,...,i=0,1,...,2" — 1, and

2n—1
faw) = D [+ 1=2")f(277) + (2" = ) f(27" (i + 1)) xa, (). 2.1

i=0
It can be easily shown that f,, is continuous on [0, 1] for every n € N, and {f,} is a decreasing
(increasing) sequence that converges pointwise to f. An example of such functions f, for n = 2
given in [16] (Theorem 2.1). Recently the authors in [14] extended this result for any integer n > 2.
Theorem 1. Suppose that 0 < v < 1, a,b > 0, with the assumption (2.1) for convex function

f(v) = a"b'"". Then

An
a’ bl < K<27\l/§7 2) a’bt—v < fn(V) <va-+ (1 - I/)b, (2.2)

n

2
where )\, = Z o min{i + 1 —2"v,2"v —i}xa, , (V).
i :
Proof. 1f v € [27,27"(i + 1)), by substitution z; = f(27"), zo2 = f(27"(i + 1)), p1 =
=i+ 1—2" and p» = 2"v — ¢ in Corollary 1, we get
1 2An

5 (27 + f27(i + 1)
F2mi)z f(27n(i +1))7

f(27ni)i+1f2”1/f(2fn(i + 1))2“1/71'

IN
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< (i41-2")f(27M) + (2" — i) f(27" (i + 1)).

This implies that

or
K(h,2)*a"b' ™" < (i + 1 —2") f(27™) + (2" — ) (27 (i + 1)). (2.3)

Using Young’s inequality (1.1), we obtain
(i +1—2")f(27™) + (2"v — i) f(27™(i + 1)) <
< (i4+1-2")(2 "a+ (1 —27")b)+
+(2" =) (27" (i + a4+ (1 —27"(i + 1))b) = aV,b. (2.4)

From inequalities (2.3) and (2.4), we deduce the desired inequalities (2.2).

Theorem 1 is proved.

Remark 1. Let 0 < v < 1, n € N and rop = min{r,1 —v}. For n = 1,2,... and ¢ =
=0,1,...,2"7 1 — 1 let

Epi=1[27",27"(i+1) Ul —-2""(+1),1—-27"].

If a,b > 0, since H,(a,b) is symmetric with respect to v = 1/2, that is, H,(a,b) = Hi_,(a,b),
v € [0, 1], then the following inequalities hold:

An 2n—1_1
K <27\L/E, 2) HZ,(CL, b) S Z [(Z + 1-— 2”r0)H2—ni(a, b)"—

i=0
+(2"rg — i)H2—”(i+1)(aa b)]XEn,i(V) <

a+b

< )
- 2

2.5)

211
where )\, = Z . min{i + 1 — 2"rg,2"rg — i}xE, ,(v). Clearly, the inequalities (2.5) are

refinements of ineéﬁlalities (2.2) in [14].

By the same argument used in the proof of Theorem 1, we give new inequalities as to the Young
inequality in the following theorem.

Theorem 2. Suppose that 0 < v < 1, a,b > 0 with the assumption (2.1) for concave function

g(v) = \J/va+ (1 — v)b. Then the following inequalities hold:

an 1
a0 <) =Y [(i +1—2")/aVynb +
=0
2
+(2"v — i)y /aVa-n(iz1)b } XA, (V) <va+ (1 —v)b. (2.6)
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Proof. Similarly as in Theorem 1, for concave function g(r) = y/va + (1 — v)b there exists a
sequence

2" —1

gn(v) = [(i +1—=2"v)\/aVy-n;b+ (2"v — 1) an—”(iJrl)b} XA, (V)
i=0

such that g,(v) < \/m. Using Young’s inequality (1.1), we obtain
(1+1-=2"v)g(27"™) + (2"v —1)g(27"(i + 1)) >
> (i+1— 2%)(&2*"*1%%—2*”*%‘) (2w — Z-)(ar"*l(i+1)b§—2f"*1(z‘+1)) >
> Varbl-v.

Theorem 2 is proved.

Furthermore, converging g, (v) to \/ra+ (1 —v)b and inequality (1.8), imply that, for any
N € N, there exists a positive integer n; such that, for every n > ny,

Bn (V)
K(QN g, 2) a’b' ™" + Sy (v;a,b) < g2 (v) < va+ (1 —v)b. (2.7)

Hence (2.7) is a refinement of (1.8). Moreover, a benefit of (2.6) is that it has an explicit formula
which doesn’t depend on certain functions.

2.2. Some matrix versions of Young and Heinz inequalities. Let A, B, X € M,(C) be such
that A and B are positive semidefinite and 0 < v < 1. Hirzallah and Kittaneh in [6] proved that

| A" X B2+ r2||AX — X B2 < |[vAX + (1 - v)||5,

where rg = min{v, 1 — v}.

Zou and Jiang [16] obtained refinements of the Heinz inequality for matrices in the following
forms:

Theorem 3. Let A, B, X € M, (C) such that A and B are positive semidefinite and suppose
that

¢(v) = ||A"XB'"™" + A"V X BY|,

SJor v €[0,1]. Then

(1 — dro)o(0) + 4r0q§<i>, Ve [o, ﬂ U [j 1},

(4ro — 1)¢<;> 4% — 2T0)¢<i>, Ve [i i]

where 1o = min{v, 1 — v}.
Krni¢ in [8] proved that

P(v) <

|A"X B + Al_”XB”H; +4v(1 — v)||AX — XB|j3 < |AX + X BJ3. (2.8)

In the following theorem we give some refinements of the Young inequality for the Hilbert—
Schmidt norm based on the inequality (2.2).
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Theorem 4. Let n € NU{0} and A, B, X € M,,(C) such that A and B are positive definite.
Let Sp(A) = {1, ..., \m} be the spectrum of A, Sp(B) = {1, .., pm} and let

A\
Kn:min{K<<J) ,2): k,jzl,...,m}.
ke

Then the following inequalities hold:

2" —1
Ep|AXB |l < Y H((i 112y A2 X Bl
1=0

(=i 2nV)A2fn(i+1)XBl—2*n(i+1)H2XATM_ <||vAX + (1 -v)XB|,,

2m—1
where Yn = Z 0 Hlln{l + 1-— 2nV, 2"y — ’L}XAn i
i= ’
Proof. Since A and B are positive definite, it follows by the spectral theorem that there exist
unitary matrices U, V' € M,,(C) such that

A=UMNU"* and B =VAV",
where

Al = diag()‘lu s 7)\771)) A2 = diag(ula .- '7Mm)7 )‘kwu’k > 07 k)j = 1)’ s

Let
Y = U*XV = [yp]-
We have
AYXB"™Y = (UMU*)" X (VAV) ™ = UANY A7V
Therefore,
v —v n v —v _ - v —v\ 2
K2m|AX B3 = K2 [AYY A3 = K37 > (M ™) luws |,
kj=1
vVAX + (1 —v)XB=UWAY + (1 —v)YAy)V"™,
and
2m—1

s s s s 2
Z H((Z +1— 2”1/)142 ixpgl-27"i + (—i + 2"V)A2 (H—l)XBl—Q (’L+1)H2XAn,i _
=0

—n; —ng (e —27"(i 2
(41 =2 =2 o (i 2D 2
1

2"—1 m
i=0 k,j=
Now, from inequalities (2.2), we deduce
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m
v —v " v 1—1v\2 .
KA XBV 5= Ko Y (M) lywsl? =
k,j=1
2"~1 m o o g Cnf )\ 2
— > ((z’+1—2”u)/\§ T (i 2" )N (1) (Hl)) ks *xa,, <
i=0 k,j=1
- 2
<D (A (L= v)) lyes* = |[vAX + (1 - v)X B3
k,j=1

Theorem 4 is proved.

Since for every unitarily invariant norm |||-[||, the function f(v) = |||A*X B~ + A" X B"|||
is convex, using the same strategy as in the proof of Theorem 4, we can present new refinements of
matrix versions of the Heinz inequality.

Corollary 2. Let A,B,X € M,,(C) such that A and B are positive definite. Let Sp(A) =
={A1,..., A\m} be the spectrum of A, Sp(B) = {1, ..., m} be the spectrum of B and let

A\
Kn:min{K<(]> ,2): k,jzl,...,m}.
P

Then the following inequalities hold:

Tn
Kn

’AVXBI—V+A1—VXBV“‘ S

|

< Z ((z’+1—2”r0) ‘HAZ_"Z'XBl—Z_"z’+A1—2_”z’XB2_”i 4
i=0

(20 — ) ||| 427D X BT g1 x g2 |y

n,g —

< [lAx + X B, (2.9)

n—1
where ~,, = Z?—o - min{i + 1 — 2"rg,2"rg — i}XE, -

Clearly, ine(fljalities (2.9) are refinements of inequality (2.10) in [7].

2.3. Some operator versions of Young and Heinz inequalities. In this section, we give an
operator version of the inequalities (2.2). To reach inequalities for bounded self-adjoint operators on
Hilbert space, we shall use the following monotonicity property for operator functions:

if X € Bj,(H) with a spectrum Sp(X) and f, g are continuous real-valued functions on Sp(X),
then

f(t) = g(), teSp(X)= f(X)=g(X). (2.10)
For more details about this property, the reader is referred to [11].

Theorem 5. Let n € NU {0} and 0 < v < 1. If A, B are two invertible positive operators in
B(H) and h a positive real number such that either A < hA < B or A > hA > B, then

2n—1
(K(h* ", 2))A"A1L,B < Z [(i +1—2")Aty-n; B+ (2"v — i) Aty 1) B| X4, < AV, B,
=0
(2.11)
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n

where \,, = Z . min{i + 1 — 2", 2"V — i} X An-
1=

Proof. Forv e [27"4,27"(i+1)) and A < hA < B, then it is clear that I < hl < A7 BAT
and 1 < h. Since the function K (t,2) is continuous and monotone increasing on, therefore, for all
real numbers ¢ such that 1 < A < ¢, we have

(K(r> " 2)) M < (K2 ", 2)™. (2.12)
Inequalities (2.2), for b = 1, become

(K@ ", 2)"a” < (i+1—2")a® " + (2" — i)a® "0+ <

<va+(1-v). (2.13)
According to (2.10), we can insert X = A% BAZ in (2.12) to get
(K(h2 ", 2)™ T < (K(X2",2)™. (2.14)
Multiplying both sides of inequality (2.14) by X 3 on the left and right, we have
(K(r* ", 2) XY < XV2(K(X?",2)" X7/? = (K(X?* ", 2)) " X", (2.15)
We also can insert X = A7 BAS in (2.13) to deduce
(KX 2)" XY < (i+1—2)X2 " 4 (20 — i) X2 "0 <
<vX+(1-v)l. (2.16)
From inequalities (2.15), (2.16), we obtain
(K27, 2)™ XY < (i +1—2")X2 " 4 (2" — i) X2 "0+D) <
<vX+(1-v)l (2.17)

Finally, if we multiply inequalities (2.17) by A? on the left- and right-sides, we get the desired
inequalities (2.11).

Theorem 5 is proved.

The assumptions of Theorem 5 are weaker than the assumptions of Theorem 7 in [17]. Because
if m, m/, M, M’ are positive real numbers such that 0 < m'I < A <mlI < MI < B < M'I, then

A< %A <B.

B}Tfn the same method used in the proof of Theorem 5, we give new refinements of operator
versions of the Heinz inequality.

Corollary 3. Let A, B are two invertible positive operators in B(H) and h a positive real
number such that either A < hA < B or A > hA > B. Then

(K(h*™",2))" (At, B + Ay, B) <

211
< [(z‘ 1= 270)(Aby i B + Aby_yniB)+
=0
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+(2"r0 — 1) (Aflg—n(i41)B + Aﬁl—Z*”(’i—I—l)B)]XEn,i <

<A—i—B7
-2

2n71_1

where \,, = Z o min{i + 1 — 2"rp, 2"rg — i} X Eni-
1=
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