DOI: 10.37863/umzh.v7319.907
UDC 517.5
B. N. Ornek (Amasya Univ., Turkey)

ESTIMATES FOR ANALYTIC FUNCTIONS
CONCERNED WITH HANKEL DETERMINANT

OLITHKH! 151 AHAJITUIHUX ®YHKIIIM,
MOB’SI3AHI 3 JETEPMIHAHTOM TAHKEJISA

We give an upper bound of Hankel determinant of the first order (H2(1)) for the classes of an analytic function. In addition,
an evaluation with the Hankel determinant from below will be given for the second angular derivative of f(z) analytic
function. For new inequalities, the results of Jack’s lemma and Hankel determinant were used. Moreover, in a class of
analytic functions on the unit disc, assuming the existence of an angular limit on the boundary point, the estimations below
of the modulus of angular derivative have been obtained.

OTpUMaHO BEPXHIO TPaHHMINO JeTepMinanTa [ankens nepruoro nopsaaky (Hz(1)) s knacis anamituanoi GpyHkiii. Takoxk
BCTAHOBIICHO OI[HKY 3HH3y 3 OEeTepMiHAHTOM ['aHKens I Opyroi KyToBoi moximHol aHamitwaaoi (yHkumii f(z). s
OTPUMaHHSI HOBUX HepiBHOCTeW BHKopHcTaHo JieMy Jxeka Ta nerepminant ['ankens. Kpim Toro, ajst kiacy aHaJIITHYHHX
(yHKIiN HAa OOMHUYHOMY JHCKY 3a YMOBH iCHYBaHHS KyTOBOI I'PAaHHII JUISi MEXKOBOI TOYKM OTPHMAHO OIIHKH 3HU3Y IS
MOyl KyTOBO{ MOXiIHOI.

1. Introduction. The most classical version of the Schwarz lemma examines the behavior of a
bounded, analytic function mapping the origin to the origin in the unit disc U = {z: |z| < 1}. It
is possible to see its effectiveness in the proofs of many important theorems. The Schwarz lemma,
which has broad applications and is the direct application of the maximum modulus principle, is
given in the most basic form as follows:

Let U be the unit disc in the complex plane C. Let f: U — U be an analytic function with
f(2) = ¢pz? + ... . Under these conditions, | f(2)| < |z[P forall z € U and |c,| < 1. In addition, if
the equality | f(2)| = |2[P holds for any 2 # 0 or |c,| = 1, then f is a rotation, that is, f(z) = 2Pe',
0 real [5, p. 329]. Schwarz lemma has several applications in the field of electrical and electronics

engineering. Usage of positive real function and boundary analysis of these functions for circuit
synthesis can be given as an exemplary application of the Schwarz lemma in electrical engineering.
Furthermore, it is also used for analysis of transfer functions in control engineering and multinotch
filter design in signal processing [12, 13].

In order to derive our main results, we have to recall here the following lemma [6].

Lemma 1 (Jack’s lemma). Let f(z) be a nonconstant analytic function in U with f(0) = 0. If

| f(20)] = max {|f(2)]: |2] < 20|},
then there exists a real number k > 1 such that

20f'(20)
f(20)

Let A denote the class of functions f(2) = z + c22% + 32 + ... that are analytic in U. Also,
let M be the subclass of A consisting of all functions f(z) satisfying

=k.
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R (f(zz)>2f/(2) (2 L) QZf/(Z)) <1 (1.1)

() 1)t T

The certain analytic functions which is in the class of M on the unit disc U are considered in this

paper. The subject of the present paper is to discuss some properties of the function f(z) which
belongs to the class of M by applying Jack’s lemma.

In this paper, we will give the estimates for the Hankel determinant of the first order for the
class of analytic function f € A will satisfy the condition (1.1). In particular, upper bounds on
H>(1) will be obtained for the class M. In addition, the relationship between the coefficients of the
Hankel determinant and the angular derivative of the function f, which provides the class M, will
be examined. In this examine, the coefficients co, c3 and ¢4 will be used. Let f € A. The ¢th
Hankel determinant of f for n > 0 and ¢ > 1 is stated by Thomas and Noonan [19] as

Cn Cn+1 ce Cntq—1
Cn+1 Cn+2 e Cn+tq
Hy(n) = . ' ' ' , ¢ =1
Cn+q-1 Cn+q cee Cn+2q—2

From the Hankel determinant for n = 1 and ¢ = 2, we have

C1 C2

Hy(1) =

= c3 — 3.

C2 C3

Here, the Hankel determinant Ho(1) = c3 — c3 is well-known as Fekete —Szegd functional [18]. In
[19], the authors have obtained the upper bounds of the Hankel determinant ‘0204 — cg{ Also, in

[16], the author have obtained the upper bounds the Hankel determinant A,(lk). Moreover, in [17], the
authors have given bounds for the second Hankel determinant for class M.
Let f € M and consider the function

U(z) =2 [(Jc(zz)ff'(z) - 1].

It is an analytic function in U and ¥(0) = 0. Now, let us show that |¥(z)| < 1 in U. If the logarithm
differentiation of both sides is taken in the last equation, we obtain

(13w} = (55 7).

1
*\I’/Z / "
2V 2 e, 1)

1+ %\I’(z) oz f(2) f(2)

and
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1

—20'(2) ' "

VG e | )
T E I (O

2
Therefore, we have

. (i) 7@ (o430 Q) |y (200)

() o & G u(z)
f(z)
We suppose that there exists a zg € U such that
max]\I/ )| = [¥(20)] = 1.
|2[<|zo0
From Jack’s lemma, we get
200’ (29)

W(zp) = e and = k.

W(20)

Therefore, we have

Y10\, e
B )
20

This contradicts the f € M. This means that there is no point zg € U such that

max \\II )| = [¥(20)] = 1.
l21<|=0

Hence, we take |¥(z)| < 1 in U. From the Schwarz lemma, we obtain

U(z) =2 [<f(zz))2 fl(z) - 1] -

2
z
1+2 3c3z+..) — 1| =
<Z—|—6222—}—03z3+”‘) ( + 2¢c9z + 3c3z” + ) ]

=2[(c3 — €3)2% + (2c4 — deges +263)2° + ...,

=2

\P(;) = 2[(cs — c3) + (2c4 — deacs +263)z + ]

z
2’63 - C%’ = 2’H2(1)| <1

and
‘HQ(l)} <

We thus obtain the following lemma.
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Lemma 2. [f f € M, then we have the inequality
1

[Ha(1)] < 5. (1.2)

Consider the product

The function B(z) is called a finite Blaschke product, where z1, z2,...,2, € U. Let the function
U(z) satisfy the condition of the Schwarz lemma and also have zeros 21, 22, ..., z,. Thus, one can
see that the inequality (1.2) can be strengthened by standard methods as follows:

1 n
[H2(1)] < 5 [Tl
=1

Since the area of applicability of Schwarz lemma is quite wide, there exist many studies about
it. Some of these studies, which are called the boundary version of Schwarz lemma, are about being
estimated from below the modulus of the derivative of the function at some boundary point of the
unit disc. The boundary version of Schwarz lemma is given as follows:

If f extends continuously to some boundary point b with [b| = 1 and if ‘ f (b)‘ =1 and f/(b)
exists, then ’ 1 (b)! > 1, which is known as the Schwarz lemma on the boundary. In addition
to conditions of the boundary Schwarz lemma, if f fixes the point zero, that is, f(z) = cpzP +
+ cpr12PT1 + ..., then the inequality

{f’(b)‘ > p+ 1 — ey

1.3
2P e (1.3)

and

|f'(0)] = p (1.4)

are obtained [11]. Inequality (1.3) and its generalizations have important applications in geometric
theory of functions and they are still hot topics in the mathematics literature [1 -4, 7, 9—14]. Mercer
[8] proves a version of the Schwarz lemma where the images of two points are known. Also, he
considers some Schwarz and Carathéodory inequalities at the boundary, as consequences of a lemma
due to Rogosinski [9]. In addition, he obtains a new boundary Schwarz lemma, for analytic functions
mapping the unit disk to itself [10].

The following lemma, known as the Julia— Wolff lemma, is needed in the sequel (see [15]).

Lemma 3 (Julia— Wolff lemma). Let f be an analytic function in U, f(0) =0 and f(U) C U.
If, in addition, the function f has an angular limit f(b) at b € U, }f(b)| = 1, then the angular
derivative f'(b) exists and 1 < | f'(b)| < oo.

Corollary 1. The analytic function f has a finite angular derivative f'(b) if and only if [’ has
the finite angular limit f'(b) at b € OU.

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 9



ESTIMATES FOR ANALYTIC FUNCTIONS CONCERNED WITH HANKEL DETERMINANT 1209

2. Main results. In this section, we discuss different versions of the boundary Schwarz lemma
and the Hankel determinant for M class. Assuming the existence of angular limit on a boundary
point, we obtain some estimations from below for the moduli of derivatives of analytic functions
from a certain class. In the inequalities obtained, the relationship between the Hankel determinant
and the second angular derivative of the f(z) function was established.

Theorem 1. Let f € M. Assume that, for some b € OU, f has an angular limit f(b) at b,

2b 2
f(b) = 3 and f'(b) = 3 Then we have the inequality

7)) > 1)
Proof. Let us consider the function
2 \?,
U(z) =2 [(f(z)) f(z) — 1].
U(z) is an analytic function in U, ¥(0) = 0 and |¥(z)| < 1 for z € U. Also, since f(b) = 2 and

3
2
1) = 3o we take

and

Therefore, from (1.4) for p = 2, we get

(26f'(b) + £ (0)8%) (F(b)" = 2 (B) £ (B)B2F' ()

2 < |W(b)] =2

2/'(6) [0 20 (f'(0))°
2

(F0)* (F®)?*  (rm)’
25 o Q
5 G )
3 3 3 9 33

|
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Q‘f// ‘7 < ‘f// ‘
and

/(b)) > -

Ol

Theorem 1 is proved.

Inequality (2.1) can be strengthened as below by taking into account cy and c3 which is second
and third coefficients in the expansion of the function f(z) = z + co2? + 323 + ... .

Theorem 2. Under the same assumptions as in Theorem 1, we have

" 2 2
|f (b)‘29<1+1+\Hz(1)|>' (2.2)

Proof. Let ®(z) be the same as in the proof of Theorem 1. Therefore, from (1.3) for p = 2, we

obtain
1-— |a2 ‘ 9

1+|CL2|_‘ ()| 7’f”(b)‘7

2
+ 2

’ W (O) |

where |az| = = 2|cg — 3| = 2|Ha(1)|.

2!
Therefore, we take | ‘
1—2{Hy(1) 9
1+ 2[Ha(1)| = §‘f ®)l;
< 2|,

1+2[Hy(1)] ~ 2

2 2
"> 1+ —r |.
@) 2 9< +1+\H2(1)|>
Theorem 2 is proved.

In the following theorem, inequality (2.2) has been strenghened by adding the consecutive term
cq of f(z) function.

Theorem 3. Let f € M. Assume that, for some b € OU, f has an angular limit f(b) at b,

2 2
f(b) = gb and f'(b) = 3 Then we have the inequality
2

) (1 - |Ha(1)])? >
2 ' 2.3
‘f ( )} Z 9 ( 1— (2|H2(1)\)2 —|—4‘C4 — ¢o(c3 +2H2(1))‘ -

and

Proof. Let U(z) be the same as in the proof of Theorem 1 and By(z) = z2. By the maximum
principle, for each z € U, we have the inequality |¥(z)| < |By(z)|. Therefore,

) Kfé’))zf/(z)_l]

m(z) = Bo(z) 22 -

=2 [(03 — c3) + (2c4 — deacs + 263)z + . }
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is analytic function in U and |m(z)| <1 for |z| < 1. In particular, we have
[m(0)] = 2les — c3] = 2| Ha(1)| (2:4)

and
! (0)] = 2‘2@ ~depes + 20‘3‘ - 4’04 — (2 + 2H2(1))‘.

Furthermore, the geometric meaning of the derivative and the inequality |¥(z)| < |By(z)| imply the
inequality

L) )10
) = YOI = 1B0) = B
The composite function
sy = )= @)
1 —m(0)m(z)

is analytic in U, H(0) = 0, |H(z)| < 1 for |z2| < 1 and |H(b)] = 1 for b € OU. For p = 1,
from (1.3), we obtain
2 1— 2
< ()] = )
1+ [H'(0)] |1 = m(0)m(b)]

5 Im/(b)] <

LA 1mO ¢ 5t — 1B (B} =
< e (IO = 1B
_1+2[Hy(1)] (9, ,,
= 12| (3o -2)
Since i )’2
1 —|m(0
H'(z) = — m/(2)
(1 - m(())m(z)2>
and
, m/(0)] _ 4fes — ea(c3 + 2Hs(1))|
|H'(0)] = =
1-— \m(0)|2 1— (2’]_[2(1)‘)2
we get ‘ ’
2 L+ 2[Ho ()| (9] oy
4ley — ca(c3 + 2Ha(1))] = 1—2|Hy(1)| <2|f ®)] 2)
1— (2|Hy(1)|)?
and )
So2 (1 H:()
‘f (b)‘ & 9 (2 " 1-— (2|Hz(1)D2 +4 }64 — (cg + 2H2(1))‘>'

Theorem 3 is proved.
If f(z) — z a have zeros different from z = 0, taking into account these zeros, inequality (2.3)
can be strengthened in another way. This is given by the following theorem.

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 9



1212 B. N. ORNEK

Theorem 4. Let f € M. Assume that, for some b € OU, f has an angular limit f(b) at b,

2 2
f(b) = 3b and f'(b) = 3 Let z1, 22, . .., zn, be zeros of the function f(z)—z in U that are different

from zero. Then we have the inequality
1 - |ZZ|
‘f ( - Z ‘b - Zz|
n 2
2 (T1, 11l — 2| Ea(1)])

+— 5 , no1— |z
(Hizl ’ZJ) —4‘HQ ‘ —|-2H ]zz 4—CQ(C2+2H2(1)))+H2(1) Zi:lT
(2.5)
Proof. Let ¥(z) be as in the proof of Theorem 1 and z1, 29, ..., 2, be zeros of the function

f(2) — z in U that are different from zero. Let

Bi(z) = 22

B(z) is an analytic function in U and |B(z)| < 1 for |z| < 1. By the maximum principle for each
z € U, we have |¥(z)| < |Bi(z)|. Consider the function

 U(z) z 2 " 1 B
R(z)—Bl(z)—QKf(z)) 7() - L2H -

i=11—a;z

(03 —cg)z2 + (204 —40203+2c§’)z3 +...
9 z—z
® Hz 11 —7%z

5 (03 — c%) + (204 —4dcocs + 2c§)z + ...
HTL zZ— Z;
i=11— %2

R(z) is analytic in U and |R(z)| < 1 for z € U. In particular, we have

—9 ‘63 —C% . 2’H2(1)}

n - n
Hi:l Eq Hi:l Eq

and )
1 _ .
2cy — 4cocs + 20% + (03 — cg) E é_ ﬂ
= i

|R'(0)] =2

Moreover, with the simple calculations, we get

bEb) o bBL(b)
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and

Bi(b)]| =2+
B () = Z - Zz‘
The auxiliary function
1 —R(0)R(2)
is analytic in the unit disc U, ®(0) = 0, |®(2)| < 1 for z € U and |®(b)| = 1 for b € JU. From
(1.3) for p = 1, we obtain

2 / L+ [ROP
<)) = —— R (b)| <
ey =0 - RORO)|
R ! /
S N OGACIEACHE
Since
5 9 no 1 —|z)?
2 QC4—40203+202+(03—02) 21:17
N 1:4 0] I, I=
[2°(0)] = = -
= [R(O)P RNET0NY
Hizl‘zz‘
ﬁ 2 (64 — C9 (C% + 2H2(1))) + HQ(l) Zj:l 1_Z‘ZZ|
=2[] - —,
i=1 (Hz:1 ’Zi‘)z - 4}H2(1)‘2
we get

2

w1 JaP]
Z@:l Zi
(IT_ yzz\) — 4| Hy(1)[?

2(04—02(6%4-2}[2 ))
2

H:'L: [zl 9 = 1_‘Zi|2
i_zmim{a‘f =22 }

2 ((Hn_ |Zi|>2 — 4]H2(1)]2>
(I, 1)~ ) + 2T 1l |2

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 9
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"z 4 2| Ha (1) nq (a2
ALl 2( )‘{iwb)\_z_zl ‘1'2},
) 2

i—1 ‘b— ZZ‘

2 (H’f_ 2] — 2]H2(1)})2
2 (e — ea(+ 2m(1)) + () Y AL

=1 Zi
9 . 1—|Zi|2
< = b)| —2—
<5 |) ;‘b_zf
and
" 2 1_|ZZ|
>,
701z +Z\b—zz\
n 2
2 (T1, 1l — 2| Ha(1)])
+
no 11—z

(I1, 1) = al () 42 [T J= |2

Theorem 4 is proved.
If f(z) — z has no zeros different from z = 0 in Theorem 3, the inequality (2.3) can be further
strengthened. This is given by the following theorem.

Theorem 5. Let f € M and c3 > ¢3 (c2 > 0, c3 > 0). Also, f(z) — z has no zeros in U
2b

3

(ca = c2(c3 +2Ho(1)) )+ Ha(1) ).

=1 Zi

except z = 0. Further assume that, for some b € OU, f has an angular limit f(b) at b, f(b) =

2
and f'(b) = 3 Then we have the inequalities

§H2( )hl (2H2 ) |C4—CQ(C2—|—2HQ( ))’
and
|ca — ca(c5 + 2Ha(1))| < |Hz(1) In(2H3(1))|.
Proof. Let c3 > c3 and ¥(z), m(z) be as in the proof of Theorem 3. Having in mind
inequality (2.4), we denote by Inm(z) the analytic branch of the logarithm normed by the condition

Inm(0) = In (2(c3 — ¢3)) = In2H,(1) < 0.

The function
Inm(z) — lnm(0)

l =

(2) Inm(z) 4+ lnm(0)
is analytic in the unit disc U, |l(z)| < 1 for z € U, 1(0) = 0 and [{(b)| = 1 for b € OU. From (1.3)
for p = 1, we obtain
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2 < V)| = 121Inm(0)] m/(c) _
L+[I'(0) = |lnm(b)+lnm(0)|2 m(c)
—2Inm(0
- ln2m(0)+arg m( {’ — IBof )’}
Since
(o] — }m'<o>‘ 1 Ala-a(@+2m0)]
12Inm(0)| | m(0) 21In (2H2(1)) 2|Ha(1)|
B -1 2‘04—02(0%4—2[’[2(1))‘ -
~ 2In(2Hy(1)) Hy(1) -
_ -1 ‘04 — CQ(C% +2H2(1))|
 In(2H,(1)) Hj(1) ’
we have . I m(0) 9
T * s (V0 72)
Hj(1)In (2H(1))

Replacing arg? m(b) by zero, we take

1 —1 " —1 1"
‘04—02(02—1-2[—[2(1))‘ = Inm(0 ( (0 }_2> 1(2H< |7 (b ‘_2>7
H2 lIl (2H2 )

_ Hy(1)In (2H2(1)) 9 "
2 1)In (2H2 ) |C4 - CQ(C% + 2H2(1))‘ = Q}f (b>‘

and ( )
1 1 Hy(1) In (2Hs (1)

‘f (b)‘ = 9 (1 2 Ho(1 )111(2H2 ) ‘04—02(02+2H2( ))!)

Similarly, the function [(z) satisfies the assumptions of the Schwarz lemma, we obtain
, B |21Inm(0)] m’(O)‘ ! ‘m/(O)‘ B
1> [I'(0)] = IInm(0) 4+ Inm(0)[2 | m(0) |~ 2Inm(0) | m(0) |

B -1 4‘04—02(034-2}12(1))‘ _
"~ 21In (2Hs(1)) 2| Ha(1))| -

—1 e —co(c3 + 2Ha (1))
In (2H,(1)) |Ha(1)]

and
’64—CQ(C%+2H2 )‘ < ‘HQ 1) In (2H2(1)){

Theorem 5 is proved.
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Theorem 6. Under hypotheses of Theorem 5, we have

U//(b)‘ > g (1 — iln (2H2(1))>.

Proof. From the proof of Theorem 5, using inequality (1.3) for the function I(z), for p = 1, we

obtain

and

/ B |2Inm(0)]
1< |I'(b)] = In m(b) + In m(0)|?

T:z/((zf))’ “In (2;{22(1)) (gw(b)‘ - 2)

0]z g (1- ).

Theorem 6 is proved.
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