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A PROOF OF A CONJECTURE ON CONVOLUTION OF HARMONIC
MAPPINGS AND SOME RELATED PROBLEMS

JOBEJIEHHS I'lTIOTE3U IT1PO 3I'OPTKY
T'APMOHIYHUX BIJOBPA’KEHDB TA JAEAKI IIOB’SA3AHI 3AJAYI

Recently, Kumar et al. proposed a conjecture concerning the convolution of a generalized right half-plane mapping with
a vertical strip mapping. They have verified the above conjecture for n = 1,2,3 and 4. Also, it has been proved only
for § = m/2. In this paper, by using of a new method, we settle this conjecture in the affirmative for all n € N and
B € (0,7). Moreover, we will use this method to prove some results on convolution of harmonic mappings. This new
method simplifies calculations and shortens the proof of results remarkably.

HemonaBHo Kumar Ta iH. 3alponoOHyBajii TiloTe3y MO0 3rOPTKHM y3arajlbHEHHUX BiOOpaKeHb MPaBOi MIBIUIOIIMHH 3
BiIOOpa)KeHHSIMH BepTHKAJIbHOI CMyru. BoHu mepeBipwin o rimoresy mist n = 1,2,3 ta 4. KpiMm mporo, rimoresy
Oyn0 moBemeHO TUTbKM Mt 3 = 7/2. BUKOPHCTOBYIOYM HOBHH METOA, MU JOBOIMMO IIFO Timore3y s BCix n € N
ta $ € (0, 7). Binpur Toro, 3a JOMOMOIOI0 LOTO METOLY MH OTPUMAIH HESKi PE3yIbTaTH IMOAO 3TOPTKH FAPMOHIYHHX
BinoOpakeHs. HoBuit MeTox crpolrye 004YnCIeHHS Ta 3HAYHO CKOPOUY€E JIOBEICHHS Pe3yibTaTiB.

1. Introduction. Let H denote the class of all complex-valued harmonic functions f = h + g
in the unit disk D = {z € C: |z| < 1}, where h and ¢ are analytic in D and normalized by
h(0) = g(0) = 0 = K'(0) — 1. We call h and g, the analytic and the co-analytic parts of f,
respectively, and have the following power series representation:

o0 oo

h(z) =z+ Z apz" and g(z) = anz", z €D.
n=2 n=1

A function f € H is locally univalent and sense-preserving in D if J;(z) > 0 for all z in D, where

the Jacobian of f = h + g is given by

Jp(z) =W (2)* = 1g' (=) .

Using a result of Lewy [12] and the inverse function theorem, one obtains that J¢(z) > 0 is a
necessary and sufficient condition for f € H to be locally univalent and sense-preserving in D.
Consequently, f = h 4+ g € H is sense-preserving in D if and only if |w(z)| < 1, where w(z) =
_9()

h'(2)
mappings, see [3, 7, 18]. Denote by Sy the class of all sense-preserving harmonic univalent map-
pings f = h +g € H and by SY the class of functions f € Sy such that fz(0) = 0. We denote by
K% and S3? the subclasses of SY whose functions map I onto convex and starlike domains.

A domain 2 C C is said to be convex in the direction v, 0 < v < 7, if every line parallel to the
the line joining 0 to e’ has a connected intersection with ). In particular, if v = 0, we say that

is the analytic dilatation of f = h 4 g. For many basic results on univalent harmonic

is convex in horizontal direction (CHD).
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Let {fg}, where fg = hg+gg, be the collection of those harmonic mappings which are obtained
by shearing of analytic vertical strip mappings

1 1+ ze®
hial2) + 95(2) = 2isin 3 log (1 + ze~B

), 0<B<m, (1.1)

with suitable dilatations (see [4]).
If

f(2) =h(z) +g(z) = 2 + ianz” + i@zﬁ

n=2 n=1

and

F(z)=H(2) +G(z) = z+§:Anz" + i?nﬁ,

n=2 n=1

then the convolution f x F' is defined to be the function

(f*F)(z)=(h+xH)(2)+ (g+G)(z) =z + ianAnz” + imﬁ
n=2 n=1

The properties of the harmonic convolutions are not as nice as that of the analytic functions. For
example, harmonic convolution of two mappings from class KY, is not necessarily in K%. In view
of this statement, a good number of papers appeared on this topic (see, for example, [5, 6, 9, 10, 14]).
In particular, the following results were obtained by Dorff [5].

Theorem 1.1 [5]. Let f = h+g € KY with h(z) + g(z) = 2/(1 — 2). Then f x f3 € 8% and
is CHD, provided f  fg is locally univalent and sense-preserving, where fg is given by (1.1).

Theorem 1.2 [5]. Let fi = h1+G; € S and fo = ha+7y € SY with hi(2)+gi(2) = z/(1-2)
for v =1,2. If f1* fa is locally univalent and sense-preserving, then f1 x fo € 52] and is convex in
the horizontal direction.

In [9], Kumar et al. defined harmonic right half-plane mappings F, = H, + G, such that
H,(z) + Ga(2) = z/(1 — z) with dilatations w,(z) = (a — z)/(1 — az), —1 < a < 1. Clearly, for
a = 0 the mapping F;, reduces to the standard right half-plane mapping.

Recently, Kumar et al. [10] studied the harmonic convolution of mapping fz with the mapping
F, and posed the following conjecture.

Conjecture A. Let fg = hg + gg be the harmonic mappings given by (1.1) with dilatation
w(z) = 2", p € R. Then F, x fz € 8Y and is CHD for all n € N provided a € [(n —2)/(n +
+2),1).

They proved the above conjecture for n = 1,2, 3,4. Also, in [11], it has been verified only for
B = /2. In this paper (see Theorem 3.1), by using of a new method, we settle this conjecture in the
affirmative for all n € N and any 3 € (0,7) . Namely, we prove that this conjectue is true for all
for all n € N provided a € [(n —2)/(n +2),1) and any S € (0, 7).

Note that in the most of papers, Cohn rule and Schur— Cohn algorithm play central role to prove
the obtained results on the harmonic convolution (see [6, 911, 13, 14]). For example, the following
results were proved by using of Cohn rule and Schur— Cohn algorithm.
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Theorem B [9]. If f, = h+ is the right half-plane mapping given by h(z)+g(z) = z/(1—=z)
with w(z) = e%2", o € R, n €N, then F, * f, € 8% is CHD for a € [(n —2)/(n +2),1).

Theorem C [15]. Let f = h+g € SY with h(z) + g(2) = 2/(1 — 2) and w(z) = —2(z +
+a)/(1+az), then Fox f € 8% and is convex in the horizontal direction for a =1 or —1 < a < 0.

In this paper, we will use a new method to prove the above results which remarkably simplifies
the calculation and shortens the proof of results compared with Cohn rule and Schur — Cohn algorithm
and this is an advantage.

A more general class of harmonic univalent mappings, L. = H. + G., ¢ > 0, was defined by
Muir [17]

L.(z) = Ho(z) + Ge(2)

1 z cz 1 [ z cz (12)

T 1t l—z+ (1—2)2} + 1+c 1—z+ (1—-2)2]"
Clearly, for ¢ = 1, we obtain the standard right half-plane mapping.

In view of Lemmas 2.1 and 2.2 in [16], similar to the approach used in the proof of Theorem 3.1
(or Conjecture A), we get the following result which solves the problem 4.4 proposed in [16].

Theorem 1.3. Let L. = H. + G. € K% be a mapping given by (1.2). If fz = hg +gg is
given by (1.1) with dilatation w(z) = €*¥2", ¢ € R, n € N, then L. x f3 € SY and is CHD for
0<c<2/n.

2. Preliminaries. The following lemmas will be required in the proof of our main results.

Lemma 2.1. Forn > 1and n € N, we have n > n" ' + 9" 2 4+ ... +n+ 1.

Proof- By mathematical induction the proof is easy, so we skip the details.

Lemma 2.2 (see [1] and also [8]). Let p(z) = =" + Zn 0 a;z’, be a complex polynomial.

]:
Then all the zeros of p(z) lie in the disk
{z: ]z <n} C{z:]z| <1+ A},
where
A= max |aj
0<j<n—1

and n is the unique positive root of the real-coefficient polynomial

Qx) =a" — \an_lla:"*l — \an_g]a;"*2 — ... — lai|x — |ag|.

In view of Lemma 2.2, we obtain the result stated below which play a central role in proofs of
our results in this paper.
Corollary2.1. If |ap| < 1, |a1| < 1,..., |an—1| < 1, then all the zeros of complex polynomial

n—1 .
p(z) = 2"+ Z o a;z’ lie in the unit disk {z: |z| <n < 1}.
J:
Proof. In contrary, let > 1, where 7 is the unique positive root of the real-coefficient
polynomial
Q(z) = 2™ — |an_1|2" " = |an_o|z" % — ... = |ay|z — |ag|.

Namely, n > 1 such that Q(n) = 0. So,
0" = lan-a 0"+ lan—2n" " + ...+ |aa|n + |ao| <
e L N R Y

This contradicts Lemma 2.1. Then n < 1 and in view of Lemma 2.2 we get the desired result.
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Lemma 2.3 (see [10], Lemma 2.1). If fg = hg + gg is the mapping given by with dilatation
w = gy /Ny, then w, the dilatation of Fy * fg, is given by

_ 2w(l4w)(a+azcos B+ zcos B+ 22) — zw'(1 — a)(1 + 2z cos B + 2?) 51
wlz) = 2(1+zcos B+ azcos B+ az?)(1+w) — zw'(1 —a)(l+ 2zcosf + 22) @.1)

Lemma 2.4 (see [9], Eq. (4)). If f = h+g € SY is right half-plane mapping, where h(z) +
+ g(2) = z/(1 — z) with dilatation w = ¢' /W (W' (z) # 0,z € D), then Ws, the dilatation of F, * f,
is given by
2(a—2)w(l4+w)+ (a— Dw'2(1 — 2)

Wi(2) = 21 —az)(1+w)+ (a— Dw'z(1 —2)° 22)

Lemma 2.5 (see [6], Eq. (6)). If f =h+g € SY with h(z)+ g(z) = z/(1 — 2) and dilatation
w = ¢'/l, then the dilatation Fy x f is given by

1 1
2 Y i
w—l—[w 2wz}+2w

we(z) = —2 (2.3)

1+ |w— 1w’z + lw’z2‘
2 2
3. Main results. In the following result, we prove Conjecture A.
Theorem 3.1. If fg = hg + g is the harmonic mapping obtained from the relation (1.1) with
. -2
dilatation w(z) = €*z", p € R, n € N, then F, x fg € 8% and is CHD for a € [nJrT 1> .
n

Proof. By Theorem 1.1, it suffices to show that I, * f3 is locally univalent and sense-preserving

or equivalently the dilatation w of F, x fz satisfies |w(z)| < 1 for all z € D. Setting w(z) = 2"

in (2.1), we obtain

@(z) = 2" 2ip p(2)
p*(2)’

where

1 .
p(z) = 2" + (a+ 1) cos Bz 4 a2" + 5(2 +an —n)e 0224
. 1 '
+[(a(14n)+1—n)cosBle Pz + 5(2(1 +an —n)e
and

1 - .
p*(z) = 5(2@ +an —n)e? 2" 4+ [(a(1 +n) + 1 —n) cos Bl 2"+

1 ,
—1—5(2 +an—n)e 2" +az’ 4 (a+1)cos Bz + 1

such that p*(2) = 2"2p(1/2).
. . 1. .
Clearly, if zg, zg # 0, is a zero of p then — is a zero of p*. Hence, if oy, as, ..., an4o are the
Z

0
zeros of p (not necessarily distinct), then we can write
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’LE(Z) — N2 (Z _f‘l> (Z _7042) o (z _704714-2)
(1 —a12) (1 —@ez) (1 —aptaz)
for |a;| < 1, since 1z — maps the closed unit disk onto itself. Therefore, to prove that |w(z)| < 1
— a2z
in D, we will show thatlall the zeros of polynomial p, i.e., aj,2,...,an+2 lie inside or on the
1 )
unit circle [z| = 1 for a € [(n — 2)/(n + 2),1). We obviously have ay = 5(2@ +an —n)e
. 1 .
ar = [(a(1+n)+1—n)cosple ™, ay = 5(2—i—an —n)e @ a3 =ay=...=a,_1=0, a, = a,
an+1 = (a+ 1) cos B and a2 = 1.
-2
For a € L, 1), we can easily see that
n+2
lap] < 1, |ag] < 1,...,]an| < 1.

n—2 n—1

-1
Also, if a € L,l we observe that |a1| < |ap] < 1 and ifa € | ——, ——
n+1 n+2 n+1

> , we have

-1 o
la1| < ]ag| <1 (for a=" T separately, it is clear that |a;| < 1).
n

So, Corollary 2.1 implies that all the zeros of polynomial

q(2) = p(2) — ap412"" =

1 . , 1 ,
= 2" pa + 5(2 +an—n)e 2%+ [(a(l +n)+1—n)cosBle ™z + 5(2a +an —n)e

lie inside the unit circle |z| = 1 (namely in the unit disk D).
On the other hand, since p(z) = ¢(2) + a,412" "}, then

+1

p(z) — 1 + a’n+1zn

q(2) q(2)

and this approaches 1 as z goes to infinity. So, there is a sufficiently large number R with

2ol
q(2)
for |z| = R, thatis, |p(z) — q(2)| < |¢(2)| for |z| = R. Now, the application of Rouché’s theorem
(see [2]) allows us to conclude that all the zeros of polynomial p lie in the unit disk D for a €
€ [(n—2)/(n+ 2),1) and this completes the proof.

Similar to the method used in he proof of the above theorem, by using of Corollary 2.1, Theorem
1.2 and the relation (2.2), we get Theorem B. So, we skip the proof.

Theorem 3.2. Let f = h+g € S with h(2)+g(z) = z/(1—2) and w(z) = —z(z+a)/(1+az).
Then Fyx f € S% and is convex in the horizontal direction for a =1 or —1 < a < 0.

Proof. By Theorem 1.2, we need only to prove that Fy x f is locally univalent and sense-
preserving. Setting wy(z) = —z(z + a)/(1 + az) in (2.3) and simplifying, we obtain

2
z3++73az2+ (1+a)z+a/2 o(2)
wa(z) = 2 2+ 3a —c *(2)’
1+ 5 z+ (1+a)22+ (a/2)23 v
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where 243
o(z) =25+ TazQ +(1+a)z+a/2.

To prove that |wa(z)| < 1 in D, it suffices to show that all the zeros of ¢ lie inside |z| = 1 or
243 1
on |z| = 1. If a = 1, then ¢(z) = 23 + %zQ +(1+a)z+a/2 = 5(1 + 2)2(1 + 22) has all

its zeros in ID. The repeated application of Corollary 2.1 (as in the proof of Theorem 3.1) shows that
this is in fact true, also for —1 < a < 0. We skip the details. This completes the proof.

The new method used in the proof of above theorems can be applied to prove many problems in
convolutions of univalent harmonic mappings. For example, we can derive the following theorem.
We skip the details for similarity.

Theorem 3.3 ([15], Theorem 1.2). Let L. = H. + G, € IC(I){ be a mapping given by (1.2). If
F, = H,+G, is the right half-plane mapping, then L. F, is univalent and convex in the horizontal
direction for 0 < ¢ < 2(1+a)/(1 — a).
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