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A CONSTRUCTION OF SPHERICAL \bfthree -DESIGNS*

ПОБУДОВА СФЕРИЧНИХ \bfthree -КОНСТРУКЦIЙ

We give a construction for spherical 3-designs. This construction is a generalization of Bondarenko’s results.

Наведено метод побудови сферичних 3-конструкцiй. Цей метод є узагальненням результатiв Бондаренка.

1. Introduction. This paper is inspired by [1], which gives an optimal antipodal spherical (35, 240,
1/7) code whose vectors form a spherical 3-design. To explain our results, we review the concept
of spherical t-designs and [1].

First, we explain the concept of spherical t-designs.
Definition 1.1 [3]. For a positive integer t, a finite nonempty set X in the unit sphere

Sd =
\bigl\{ 
x = (x1, . . . , xd+1) \in \BbbR d+1 | x21 + . . .+ x2d+1 = 1

\bigr\} 
is called a spherical t-design in Sd if the following condition is satisfied:

1

| X| 
\sum 
x\in X

f(x) =
1

| Sd| 

\int 
Sd

f(x)d\sigma (x),

for all polynomials f(x) = f(x1, . . . , xd+1) of degree not exceeding t. Here, the right-hand side
involves the surface integral over the sphere and | Sd| , the volume of sphere Sd.

The meaning of spherical t-designs is that the average value of the integral of any polynomial of
degree up to t on the sphere can be replaced by its average value over a finite set on the sphere.

The following is an equivalent condition of the antipodal spherical designs.
Proposition 1.1 [6]. An antipodal set X = \{ x1, . . . , xN\} in Sd forms a spherical 3-design if

and only if
1

| X| 2
\sum 

xi,xj\in X
(xi, xj)

2 =
1

d+ 1
.

An antipodal set X = \{ x1, . . . , xN\} in Sd forms a spherical 5-design if and only if
1

| X| 2
\sum 

xi,xj\in X
(xi, xj)

2 =
1

d+ 1
,

1

| X| 2
\sum 

xi,xj\in X
(xi, xj)

4 =
3

(d+ 3)(d+ 1)
.

(1.1)

Next, we review [1]. Let

\Delta =

d+1\sum 
j=1

\partial 2

\partial x2j
.
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We say that a polynomial P in \BbbR d+1 is harmonic if \Delta P = 0. For integer k \geq 1, the restriction of
a homogeneous harmonic polynomial of degree k to Sd is called a spherical harmonic of degree k.

We denote by \mathrm{H}\mathrm{a}\mathrm{r}\mathrm{m}k(S
d) the vector space of the spherical harmonics of degree k. Note that (see,

for example, [6])

\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{H}\mathrm{a}\mathrm{r}\mathrm{m}k(S
d) =

2k + d - 1

k + d - 1

\biggl( 
d+ k  - 1

k

\biggr) 
.

For P,Q \in \mathrm{H}\mathrm{a}\mathrm{r}\mathrm{m}k(S
d), we denote by \langle P,Q\rangle the usual inner product

\langle P,Q\rangle :=
\int 
Sd

P (x)Q(x)d\sigma (x),

where d\sigma (x) is a normalized Lebesgue measure on the unit sphere Sd. For x \in Sd, there exists
Px \in \mathrm{H}\mathrm{a}\mathrm{r}\mathrm{m}k(S

d) such that

\langle Px, Q\rangle = Q(x) for all Q \in \mathrm{H}\mathrm{a}\mathrm{r}\mathrm{m}k(S
d).

It is known that

Px(y) = gk,d((x, y)),

where gk,d is a Gegenbauer polynomial. Let

Gx =
Px

gk,d(1)1/2
.

We remark that

\langle Gx, Gy\rangle =
gk,d((x, y))

gk,d(1)
.

(For a detailed explanation of Gegenbauer polynomials, see [6].) Therefore, if we have a set X =

= \{ x1, . . . , xN\} in Sd, then we obtain the set GX = \{ Gx1 , . . . , GxN \} in SdimHarmk(S
d) - 1.

Let X = \{ x1, . . . , x120\} be an arbitrary subset of 240 normalized minimum vectors of the E8

lattice such that no pair of antipodal vectors is present in X. Set Px(y) = g2,7((x, y)). A. V. Bon-
darenko in [1] showed that GX \cup  - GX is an optimal antipodal spherical (35, 240, 1/7) code whose
vectors form a spherical 3-design, where

 - GX := \{  - Gx | Gx \in GX\} .

Furthermore, A. V. Bondarenko in [1] showed that GX \cup  - GX is a spherical 3-design, using the
special properties of the E8 lattice. However, this fact is an example that extends to a more general
setting as follows. The spherical 3-design obtained by A. V. Bondarenko in [1] is a special case of
our main result, which is presented as the following theorem.

Theorem 1.1. Let X be a finite subset of sphere Sd satisfying the condition (1.1). We set
Px(y) = g2,d((x, y)). Then GX \cup  - GX is a spherical 3-design in SdimHarm2(Sd) - 1.

We denote by \widetilde GX the set GX \cup  - GX defined in Theorem 1.1.

Corollary 1.1. 1. Let X be a spherical 4-design in Sd. Then \widetilde GX is a spherical 3-design
in SdimHarm2(Sd) - 1.
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2. Let X be a spherical 4-design in Sd and an antipodal set. Let X \prime be an arbitrary subset
of X with | X \prime | = | X| /2 such that no pair of antipodal vectors is present in X \prime . Then \widetilde GX\prime is a
spherical 3-design in SdimHarm2(Sd) - 1.

In Section 2, we give a proof of Theorem 1.1. In Section 3, we give some examples.
2. Proof of Theorem 1.1. Let X = \{ x1, . . . , xN\} be in Sd and GX = \{ Gx1 , . . . , GxN \} be in

\mathrm{H}\mathrm{a}\mathrm{r}\mathrm{m}2(S
d). By Proposition 1.1, we have

1

| X| 2
\sum 

xi,xj\in X
(xi, xj)

2 =
1

d+ 1
,

1

| X| 2
\sum 

xi,xj\in X
(xi, xj)

4 =
3

(d+ 3)(d+ 1)
,

since X is a spherical 4-design. We have the following Gegenbauer polynomial of degree 2 on Sd :

g2,d(x) =
d+ 1

d
x2  - 1

d
.

It is enough to show that

1

| X| 2
\sum 

xi,xj\in X
\langle Gxi , Gxj \rangle 2 =

2

d(d+ 3)
,

since

\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{H}\mathrm{a}\mathrm{r}\mathrm{m}2(S
d) =

d+ 3

d+ 1

\biggl( 
d+ 1

2

\biggr) 
=

d(d+ 3)

2

and GX \cup  - GX is an antipodal set. We remark that if X is a spherical t-design, then X \cup  - X is
also a spherical t-design.

In fact,

1

| X| 2
\sum 

xi,xj\in X
\langle Gxi , Gxj \rangle 2 =

1

| X| 2
\sum 

xi,xj\in X
g2,d((xi, xj))

2 =

=
1

| X| 2
\sum 

xi,xj\in X

\biggl( 
(d+ 1)2

d2
(xi, xj)

4  - 2
d+ 1

d2
(xi, xj)

2 +
1

d2

\biggr) 
=

=
(d+ 1)2

d2
3

(d+ 3)(d+ 1)
 - 2

d+ 1

d2
1

d+ 1
+

1

d2
=

2

d(d+ 3)
.

Therefore, if X = \{ x1, . . . , xN\} is a spherical 4-design, then GX \cup  - GX is a spherical 3-design.
Theorem 1.1 is proved.
3. Examples. In this section, we give some examples of using Theorem 1.1.
First we recall the concept of a strongly perfect and spherical (d+ 1, N, a) code.
Definition 3.1 [6]. A lattice L is called strongly perfect if the minimum vectors of L form a

spherical 5-design.
Definition 3.2 [2]. An antipodal set X = \{ x1, . . . , xN\} in Sd is called an antipodal spherical

(d+ 1, N, a) code if | (xi, xj)| \leq a for some a > 0 and all xi, xj \in X, i \not = j, are not antipodal.
Next we give some examples.
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Example 3.1. The strongly perfect lattices whose ranks are less than 12 have been classified
[4, 5]. Such lattices whose ranks are greater than 1 are as follows:

A2, D4, E6, E
\sharp 
6, E7, E

\sharp 
7, E8, K10, K

\sharp 
10, CT12.

(For a detailed explanation, see [4, 5].) Let L be one of the above lattices and X be the minimum
vectors of L. Then, let X \prime be an arbitrary subset of X with | X \prime | = | X| /2 such that no pair of
antipodal vectors is present in X \prime .

By Corollary 1.1, GX \cup  - GX is a spherical 3-design in Sd, where d is as follows:

L (d+ 1, N, a) code | (xi, xj)| | \langle Gxi , Gxj \rangle | 
A2 (2, 6, 1/2) \{ 1/2\} \{ 1/2\} 
D4 (9, 24, 1/3) \{ 0, 1/2\} \{ 0, 1/3\} 
E6 (20, 72, 1/5) \{ 0, 1/2\} \{ 1/10, 1/5\} 
E\sharp 

6 (20, 54, 1/8) \{ 1/4, 1/2\} \{ 1/10, 1/8\} 
E7 (27, 126, 1/6) \{ 0, 1/2\} \{ 1/8, 1/6\} 
E\sharp 

7 (27, 56, 1/27) \{ 1/3\} \{ 1/27\} 
E8 (35, 240, 1/7) [1] \{ 0, 1/2\} \{ 1/7\} 
K10 (54, 276, 1/6) \{ 0, 1/4, 1/2\} \{ 1/24, 1/9, 1/6\} 
K\sharp 

10 (54, 54, 1/6) \{ 1/8, 1/4, 1/2\} \{ 1/24, 3/32, 1/6\} 
CT12 (77, 756, 2/11) \{ 0, 1/4, 1/2\} \{ 1/44, 1/11, 2/11\} 

Example 3.2. Let X be the minimum vectors of the Barnes – Wall lattice of rank 16, and let X \prime 

be an arbitrary subset of X with | X \prime | = | X| /2 such that no pair of antipodal vectors is present in
X \prime . We remark that X is a spherical 7-design.

By Corollary 1.1, GX \cup  - GX is a spherical 3-design in Sd, where d is as follows:

L (d+ 1, N, a) code | (xi, xj)| | \langle Gxi , Gxj \rangle | 
\mathrm{B}\mathrm{W}16 (135, 4320, 1/5) \{ 0, 1/4, 1/2\} \{ 0, 1/15, 1/5\} 

Example 3.3. Let X be the minimum vectors of the Leech lattice, and let X \prime be an arbitrary
subset of X with | X \prime | = | X| /2 such that no pair of antipodal vectors is present in X \prime . We remark
that X is a spherical 11-design.

By Corollary 1.1, GX \cup  - GX is a spherical 3-design in Sd, where d is as follows:

L (d+ 1, N, a) code | (xi, xj)| | \langle Gxi , Gxj \rangle | 
\mathrm{L}\mathrm{e}\mathrm{e}\mathrm{c}\mathrm{h} (299, 196560, 5/23) \{ 0, 1/4, 1/2\} \{ 1/46, 1/23, 5/23\} 
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