DOI: 10.37863/umzh.v74i1.986
UDC 512.5
T. Miezaki (Waseda Univ., Tokyo, Japan)

A CONSTRUCTION OF SPHERICAL 3-DESIGNS* ПОБУДОВА СФЕРИЧНИХ 3-КОНСТРУКЦІЙ

We give a construction for spherical 3-designs. This construction is a generalization of Bondarenko's results.
Наведено метод побудови сферичних 3 -конструкцій. Цей метод є узагальненням результатів Бондаренка.

1. Introduction. This paper is inspired by [1], which gives an optimal antipodal spherical (35, 240, $1 / 7$) code whose vectors form a spherical 3-design. To explain our results, we review the concept of spherical t-designs and [1].

First, we explain the concept of spherical t-designs.
Definition 1.1 [3]. For a positive integer t, a finite nonempty set X in the unit sphere

$$
S^{d}=\left\{x=\left(x_{1}, \ldots, x_{d+1}\right) \in \mathbb{R}^{d+1} \mid x_{1}^{2}+\ldots+x_{d+1}^{2}=1\right\}
$$

is called a spherical t-design in S^{d} if the following condition is satisfied:

$$
\frac{1}{|X|} \sum_{x \in X} f(x)=\frac{1}{\left|S^{d}\right|} \int_{S^{d}} f(x) d \sigma(x)
$$

for all polynomials $f(x)=f\left(x_{1}, \ldots, x_{d+1}\right)$ of degree not exceeding t. Here, the right-hand side involves the surface integral over the sphere and $\left|S^{d}\right|$, the volume of sphere S^{d}.

The meaning of spherical t-designs is that the average value of the integral of any polynomial of degree up to t on the sphere can be replaced by its average value over a finite set on the sphere.

The following is an equivalent condition of the antipodal spherical designs.
Proposition 1.1 [6]. An antipodal set $X=\left\{x_{1}, \ldots, x_{N}\right\}$ in S^{d} forms a spherical 3-design if and only if

$$
\frac{1}{|X|^{2}} \sum_{x_{i}, x_{j} \in X}\left(x_{i}, x_{j}\right)^{2}=\frac{1}{d+1}
$$

An antipodal set $X=\left\{x_{1}, \ldots, x_{N}\right\}$ in S^{d} forms a spherical 5 -design if and only if

$$
\begin{gather*}
\frac{1}{|X|^{2}} \sum_{x_{i}, x_{j} \in X}\left(x_{i}, x_{j}\right)^{2}=\frac{1}{d+1}, \\
\frac{1}{|X|^{2}} \sum_{x_{i}, x_{j} \in X}\left(x_{i}, x_{j}\right)^{4}=\frac{3}{(d+3)(d+1)} . \tag{1.1}
\end{gather*}
$$

Next, we review [1]. Let

$$
\Delta=\sum_{j=1}^{d+1} \frac{\partial^{2}}{\partial x_{j}^{2}}
$$

[^0]We say that a polynomial P in \mathbb{R}^{d+1} is harmonic if $\Delta P=0$. For integer $k \geq 1$, the restriction of a homogeneous harmonic polynomial of degree k to S^{d} is called a spherical harmonic of degree k. We denote by $\operatorname{Harm}_{k}\left(S^{d}\right)$ the vector space of the spherical harmonics of degree k. Note that (see, for example, [6])

$$
\operatorname{dim} \operatorname{Harm}_{k}\left(S^{d}\right)=\frac{2 k+d-1}{k+d-1}\binom{d+k-1}{k}
$$

For $P, Q \in \operatorname{Harm}_{k}\left(S^{d}\right)$, we denote by $\langle P, Q\rangle$ the usual inner product

$$
\langle P, Q\rangle:=\int_{S^{d}} P(x) Q(x) d \sigma(x)
$$

where $d \sigma(x)$ is a normalized Lebesgue measure on the unit sphere S^{d}. For $x \in S^{d}$, there exists $P_{x} \in \operatorname{Harm}_{k}\left(S^{d}\right)$ such that

$$
\left\langle P_{x}, Q\right\rangle=Q(x) \quad \text { for all } \quad Q \in \operatorname{Harm}_{k}\left(S^{d}\right)
$$

It is known that

$$
P_{x}(y)=g_{k, d}((x, y))
$$

where $g_{k, d}$ is a Gegenbauer polynomial. Let

$$
G_{x}=\frac{P_{x}}{g_{k, d}(1)^{1 / 2}}
$$

We remark that

$$
\left\langle G_{x}, G_{y}\right\rangle=\frac{g_{k, d}((x, y))}{g_{k, d}(1)}
$$

(For a detailed explanation of Gegenbauer polynomials, see [6].) Therefore, if we have a set $X=$ $=\left\{x_{1}, \ldots, x_{N}\right\}$ in S^{d}, then we obtain the set $G_{X}=\left\{G_{x_{1}}, \ldots, G_{x_{N}}\right\}$ in $S^{\operatorname{dim} \operatorname{Harm}_{k}\left(S^{d}\right)-1}$.

Let $X=\left\{x_{1}, \ldots, x_{120}\right\}$ be an arbitrary subset of 240 normalized minimum vectors of the E_{8} lattice such that no pair of antipodal vectors is present in X. Set $P_{x}(y)=g_{2,7}((x, y))$. A. V. Bondarenko in [1] showed that $G_{X} \cup-G_{X}$ is an optimal antipodal spherical (35,240,1/7) code whose vectors form a spherical 3-design, where

$$
-G_{X}:=\left\{-G_{x} \mid G_{x} \in G_{X}\right\}
$$

Furthermore, A. V. Bondarenko in [1] showed that $G_{X} \cup-G_{X}$ is a spherical 3-design, using the special properties of the E_{8} lattice. However, this fact is an example that extends to a more general setting as follows. The spherical 3-design obtained by A. V. Bondarenko in [1] is a special case of our main result, which is presented as the following theorem.

Theorem 1.1. Let X be a finite subset of sphere S^{d} satisfying the condition (1.1). We set $P_{x}(y)=g_{2, d}((x, y))$. Then $G_{X} \cup-G_{X}$ is a spherical 3-design in $S^{\operatorname{dim} \operatorname{Harm}_{2}\left(S^{d}\right)-1}$.

We denote by $\widetilde{G_{X}}$ the set $G_{X} \cup-G_{X}$ defined in Theorem 1.1.
Corollary 1.1. 1. Let X be a spherical 4-design in S^{d}. Then $\widetilde{G_{X}}$ is a spherical 3-design in $S^{\operatorname{dim} \operatorname{Harm}_{2}\left(S^{d}\right)-1}$.
2. Let X be a spherical 4-design in S^{d} and an antipodal set. Let X^{\prime} be an arbitrary subset of X with $\left|X^{\prime}\right|=|X| / 2$ such that no pair of antipodal vectors is present in X^{\prime}. Then $\widetilde{G_{X^{\prime}}}$ is a spherical 3-design in $S^{\operatorname{dim}^{\operatorname{Harm}}\left(S^{d}\right)-1}$.

In Section 2, we give a proof of Theorem 1.1. In Section 3, we give some examples.
2. Proof of Theorem 1.1. Let $X=\left\{x_{1}, \ldots, x_{N}\right\}$ be in S^{d} and $G_{X}=\left\{G_{x_{1}}, \ldots, G_{x_{N}}\right\}$ be in $\operatorname{Harm}_{2}\left(S^{d}\right)$. By Proposition 1.1, we have

$$
\begin{gathered}
\frac{1}{|X|^{2}} \sum_{x_{i}, x_{j} \in X}\left(x_{i}, x_{j}\right)^{2}=\frac{1}{d+1}, \\
\frac{1}{|X|^{2}} \sum_{x_{i}, x_{j} \in X}\left(x_{i}, x_{j}\right)^{4}=\frac{3}{(d+3)(d+1)},
\end{gathered}
$$

since X is a spherical 4-design. We have the following Gegenbauer polynomial of degree 2 on S^{d} :

$$
g_{2, d}(x)=\frac{d+1}{d} x^{2}-\frac{1}{d} .
$$

It is enough to show that

$$
\frac{1}{|X|^{2}} \sum_{x_{i}, x_{j} \in X}\left\langle G_{x_{i}}, G_{x_{j}}\right\rangle^{2}=\frac{2}{d(d+3)},
$$

since

$$
\operatorname{dim} \operatorname{Harm}_{2}\left(S^{d}\right)=\frac{d+3}{d+1}\binom{d+1}{2}=\frac{d(d+3)}{2}
$$

and $G_{X} \cup-G_{X}$ is an antipodal set. We remark that if X is a spherical t-design, then $X \cup-X$ is also a spherical t-design.

In fact,

$$
\begin{aligned}
& \frac{1}{|X|^{2}} \sum_{x_{i}, x_{j} \in X}\left\langle G_{x_{i}}, G_{x_{j}}\right\rangle^{2}=\frac{1}{|X|^{2}} \sum_{x_{i}, x_{j} \in X} g_{2, d}\left(\left(x_{i}, x_{j}\right)\right)^{2}= \\
= & \frac{1}{|X|^{2}} \sum_{x_{i}, x_{j} \in X}\left(\frac{(d+1)^{2}}{d^{2}}\left(x_{i}, x_{j}\right)^{4}-2 \frac{d+1}{d^{2}}\left(x_{i}, x_{j}\right)^{2}+\frac{1}{d^{2}}\right)= \\
= & \frac{(d+1)^{2}}{d^{2}} \frac{3}{(d+3)(d+1)}-2 \frac{d+1}{d^{2}} \frac{1}{d+1}+\frac{1}{d^{2}}=\frac{2}{d(d+3)} .
\end{aligned}
$$

Therefore, if $X=\left\{x_{1}, \ldots, x_{N}\right\}$ is a spherical 4-design, then $G_{X} \cup-G_{X}$ is a spherical 3-design.
Theorem 1.1 is proved.
3. Examples. In this section, we give some examples of using Theorem 1.1.

First we recall the concept of a strongly perfect and spherical $(d+1, N, a)$ code.
Definition 3.1 [6]. A lattice L is called strongly perfect if the minimum vectors of L form a spherical 5-design.

Definition 3.2 [2]. An antipodal set $X=\left\{x_{1}, \ldots, x_{N}\right\}$ in S^{d} is called an antipodal spherical $(d+1, N, a)$ code if $\left|\left(x_{i}, x_{j}\right)\right| \leq a$ for some $a>0$ and all $x_{i}, x_{j} \in X, i \neq j$, are not antipodal.

Next we give some examples.

Example 3.1. The strongly perfect lattices whose ranks are less than 12 have been classified [4, 5]. Such lattices whose ranks are greater than 1 are as follows:

$$
A_{2}, D_{4}, E_{6}, E_{6}^{\sharp}, E_{7}, E_{7}^{\sharp}, E_{8}, K_{10}, K_{10}^{\sharp}, C T_{12} .
$$

(For a detailed explanation, see [4,5].) Let L be one of the above lattices and X be the minimum vectors of L. Then, let X^{\prime} be an arbitrary subset of X with $\left|X^{\prime}\right|=|X| / 2$ such that no pair of antipodal vectors is present in X^{\prime}.

By Corollary 1.1, $G_{X} \cup-G_{X}$ is a spherical 3-design in S^{d}, where d is as follows:

L	$(d+1, N, a)$ code	$\left\|\left(x_{i}, x_{j}\right)\right\|$	$\left\|\left\langle G_{x_{i}}, G_{x_{j}}\right\rangle\right\|$
A_{2}	$(2,6,1 / 2)$	$\{1 / 2\}$	$\{1 / 2\}$
D_{4}	$(9,24,1 / 3)$	$\{0,1 / 2\}$	$\{0,1 / 3\}$
E_{6}	$(20,72,1 / 5)$	$\{0,1 / 2\}$	$\{1 / 10,1 / 5\}$
E_{6}^{\sharp}	$(20,54,1 / 8)$	$\{1 / 4,1 / 2\}$	$\{1 / 10,1 / 8\}$
E_{7}	$(27,126,1 / 6)$	$\{0,1 / 2\}$	$\{1 / 8,1 / 6\}$
E_{7}^{\sharp}	$(27,56,1 / 27)$	$\{1 / 3\}$	$\{1 / 27\}$
E_{8}	$(35,240,1 / 7)[1]$	$\{0,1 / 2\}$	$\{1 / 7\}$
K_{10}	$(54,276,1 / 6)$	$\{0,1 / 4,1 / 2\}$	$\{1 / 24,1 / 9,1 / 6\}$
K_{10}^{\sharp}	$(54,54,1 / 6)$	$\{1 / 8,1 / 4,1 / 2\}$	$\{1 / 24,3 / 32,1 / 6\}$
$C T_{12}$	$(77,756,2 / 11)$	$\{0,1 / 4,1 / 2\}$	$\{1 / 44,1 / 11,2 / 11\}$

Example 3.2. Let X be the minimum vectors of the Barnes - Wall lattice of rank 16, and let X^{\prime} be an arbitrary subset of X with $\left|X^{\prime}\right|=|X| / 2$ such that no pair of antipodal vectors is present in X^{\prime}. We remark that X is a spherical 7 -design.

By Corollary 1.1, $G_{X} \cup-G_{X}$ is a spherical 3-design in S^{d}, where d is as follows:

L	$(d+1, N, a)$ code	$\left\|\left(x_{i}, x_{j}\right)\right\|$	$\left\|\left\langle G_{x_{i}}, G_{x_{j}}\right\rangle\right\|$
BW $_{16}$	$(135,4320,1 / 5)$	$\{0,1 / 4,1 / 2\}$	$\{0,1 / 15,1 / 5\}$

Example 3.3. Let X be the minimum vectors of the Leech lattice, and let X^{\prime} be an arbitrary subset of X with $\left|X^{\prime}\right|=|X| / 2$ such that no pair of antipodal vectors is present in X^{\prime}. We remark that X is a spherical 11-design.

By Corollary 1.1, $G_{X} \cup-G_{X}$ is a spherical 3 -design in S^{d}, where d is as follows:

L	$(d+1, N, a)$ code	$\left\|\left(x_{i}, x_{j}\right)\right\|$	$\left\|\left\langle G_{x_{i}}, G_{x_{j}}\right\rangle\right\|$
Leech	$(299,196560,5 / 23)$	$\{0,1 / 4,1 / 2\}$	$\{1 / 46,1 / 23,5 / 23\}$

References

1. A. V. Bondarenko, On a spherical code in the space of spherical harmonics, Ukr. Math. J., 62, № 6, 993 - 996 (2010).
2. J. H. Conway, N. J. A. Sloane, Sphere packings lattices and groups, third ed., Springer, New York (1999).
3. P. Delsarte, J.-M. Goethals, J. J. Seidel, Spherical codes and designs, Geom. Dedicata, 6, 363 - 388 (1977).
4. G. Nebe, B. Venkov, The strongly perfect lattices of dimension 10, Colloque International de Theorie des Nombres (Talence, 1999), J. Theor. Nombres Bordeaux, 12, № 2, 503-518 (2000).
5. G. Nebe, B. Venkov, Low-dimensional strongly perfect lattices. I. The 12-dimensional case, Enseign. Math., 51, № 1-2, 129-163 (2005).
6. B. Venkov, Réseaux et designs sphériques. Réseaux euclidiens, designs sphériques et formes modulaires, Monogr. Enseign. Math., 37, 10 - 86 (2001).

[^0]: * This paper was supported by JSPS KAKENHI (18K03217).

