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A CONSTRUCTION OF SPHERICAL 3-DESIGNS *
NOBYJIOBA COEPUYHUX 3-KOHCTPYKHIﬁ

We give a construction for spherical 3-designs. This construction is a generalization of Bondarenko’s results.

Hageneno meron nmoGynoBu ceprnyHux 3-KOHCTpykmii. Lleit MeTox € y3aranpHeHHsAM pe3yinbTariB bomapeHka.

1. Introduction. This paper is inspired by [1], which gives an optimal antipodal spherical (35,240,
1/7) code whose vectors form a spherical 3-design. To explain our results, we review the concept
of spherical ¢-designs and [1].

First, we explain the concept of spherical ¢-designs.

Definition 1.1 [3]. For a positive integer t, a finite nonempty set X in the unit sphere

Sd:{x:(ml,...,xd+1)€Rd+1|x%—|—...+xfl+1:1}

is called a spherical t-design in S? if the following condition is satisfied:
1 1
e o 1@) = g [ f@)dote),
reX §d

for all polynomials f(x) = f(x1,...,24+1) of degree not exceeding t. Here, the right-hand side
involves the surface integral over the sphere and |S?|, the volume of sphere S.

The meaning of spherical ¢-designs is that the average value of the integral of any polynomial of
degree up to t on the sphere can be replaced by its average value over a finite set on the sphere.

The following is an equivalent condition of the antipodal spherical designs.

Proposition 1.1 [6]. An antipodal set X = {x1,...,xn} in S¢ forms a spherical 3-design if
and only if . .

2
W m%éX(xi’J:j) - m

An antipodal set X = {x1,...,xn} in S forms a spherical 5-design if and only if

1 , 1
W Z (:Bl?x]) _ﬁa

zi,x; €X -
1 , 3 (1.1)
—_ (x4, 2j)* = — .
| X |2 IZ%;X v (d+3)(d+1)
Next, we review [1]. Let
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We say that a polynomial P in R*! is harmonic if AP = 0. For integer k& > 1, the restriction of
a homogeneous harmonic polynomial of degree k to S¢ is called a spherical harmonic of degree k.
We denote by Harmy,(S¢) the vector space of the spherical harmonics of degree k. Note that (see,
for example, [6])

- 1
dim Harmy,(S%) = Zerd=1 <d Tk >

k+d—1 k
For P, € Harmy(S?), we denote by (P, Q) the usual inner product

(P.Q) = [ P@Q)ds(o)
Sd
where do(z) is a normalized Lebesgue measure on the unit sphere S¢. For x € S¢, there exists
P, € Harmy,(S9) such that
(P,,Q) = Q(z) forall Q € Harmy(59).
It is known that

Px(y) = gk,d((xvy))a

where gy, 4 is a Gegenbauer polynomial. Let

Py
G, = 791@@(1)1/2.
We remark that
gra((z,y))
(G Gl = (1)
(For a detailed explanation of Gegenbauer polynomials, see [6].) Therefore, if we have a set X =
= {z1,...,zx} in S%, then we obtain the set Gx = {Gy,, ..., Gyy } in SdimHarmi (591,
Let X = {x1,...,7120} be an arbitrary subset of 240 normalized minimum vectors of the Eg

lattice such that no pair of antipodal vectors is present in X. Set Py(y) = g2,7((x,y)). A. V. Bon-
darenko in [1] showed that Gx U —Gx is an optimal antipodal spherical (35,240,1/7) code whose
vectors form a spherical 3-design, where

—Gx = {—Gm | G, € Gx}.

Furthermore, A. V. Bondarenko in [1] showed that Gx U —Gx 1is a spherical 3-design, using the
special properties of the Eg lattice. However, this fact is an example that extends to a more general
setting as follows. The spherical 3-design obtained by A.V. Bondarenko in [1] is a special case of
our main result, which is presented as the following theorem.

Theorem 1.1. Let X be a finite subset of sphere S satisfying the condition (1.1). We set

P.(y) = g2.4((x,y)). Then Gx U —Gx is a spherical 3-design in Gdim Harms (S7)—1

We denote by Gx the set Gx U —Gx defined in Theorem 1.1.

Corollary 1.1. 1. Let X be a spherical 4-design in S¢. Then é\;( is a spherical 3-design
in SdimHarmg(Sd)—l.
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2. Let X be a spherical 4-design in S® and an antipodal set. Let X' be an arbitrary subset
of X with |X'| = |X|/2 such that no pair of antipodal vectors is present in X'. Then Gy is a
spherical 3-design in SI™ Harma(S%)—1

In Section 2, we give a proof of Theorem 1.1. In Section 3, we give some examples.

2. Proof of Theorem 1.1. Let X = {x1,...,2x} bein S% and Gx = {G4,,...,Gzy} be in
Harmy(S?). By Proposition 1.1, we have

1 , 1
xE 2 @ne)’ =g
|X :131',$]'€X d+1
1 3
($'7$')4: )
yX2xi§€X 21T A+ 3)(d+ )

since X is a spherical 4-design. We have the following Gegenbauer polynomial of degree 2 on S:

d+1 1
92,4(z) = %iﬁ? T d
It is enough to show that
1 2
TvI19o <Gxi>Gx~>2:7’
| X |2 xl%:@( I d(d+3)
sinee d+3(d+1\  d(d+3)
+ + +
im H ) S Sl 4
dim Harms (S%) F 1( 5 > 5

and Gx U —Gx is an antipodal set. We remark that if X is a spherical ¢-design, then X U —X is
also a spherical t-design.

In fact,

1 ) 1 )

X7 2 (GanGa) =i D gal(ainag) =
zi,x;€X i,z €X

1 (d+1)> 4 Sd+1 o 1

“iE (e 2 e ) =

$i,ijX

(d+1)? 3 d+1 1 1 2

Z ([d+3)d+1) @ d+l @& dd+3)
Therefore, if X = {z1,..., 2N} is a spherical 4-design, then G x U —Gx is a spherical 3-design.
Theorem 1.1 is proved.
3. Examples. In this section, we give some examples of using Theorem 1.1.
First we recall the concept of a strongly perfect and spherical (d + 1, N, a) code.
Definition 3.1 [6]. A lattice L is called strongly perfect if the minimum vectors of L form a
spherical 5-design.
Definition 3.2 [2]. An antipodal set X = {x1,...,xn} in S is called an antipodal spherical
(d+1,N,a) code if |(zi,z;)| < a for some a > 0 and all x;,x; € X, i # j, are not antipodal.
Next we give some examples.
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Example 3.1. The strongly perfect lattices whose ranks are less than 12 have been classified
[4, 5]. Such lattices whose ranks are greater than 1 are as follows:

A27 D47 E67 Ega E?a Eg7 E87 KlO; K%Ov CTIQ-

(For a detailed explanation, see [4, 5].) Let L be one of the above lattices and X be the minimum
vectors of L. Then, let X’ be an arbitrary subset of X with |X’| = |X|/2 such that no pair of
antipodal vectors is present in X’.

By Corollary 1.1, Gx U —Gx is a spherical 3-design in S¢, where d is as follows:

L (d+1,N,a) code |(zi, ;)] (G, Gay)l
As (2,6,1/2) {1/2} {1/2}
Dy (9,24,1/3) {0,1/2} {0,1/3}
Fs (20,72,1/5) {0,1/2} {1/10,1/5}
Ef (20,54,1/8) {1/4,1/2} {1/10,1/8}
B | (27,126,1/6) {0,1/2} {1/8,1/6}
E? (27,56,1/27) {1/3} {1/27}
Es | (35,240,1/7) [1] {0,1/2} {1/7}
Ko | (54,276,1/6) {0,1/4,1/2F | {1/24,1/9,1/6}
Koy | (54,54,1/6) | {1/8,1/4,1/2} | {1/24,3/32,1/6}
CTy, | (77,756,2/11) | {0,1/4,1/2} | {1/44,1/11,2/11}
Example 3.2. Let X be the minimum vectors of the Barnes — Wall lattice of rank 16, and let X’
be an arbitrary subset of X with |X’| = |X|/2 such that no pair of antipodal vectors is present in

X'. We remark that X is a spherical 7-design.
By Corollary 1.1, Gx U —Gx is a spherical 3-design in S¢, where d is as follows:

L (d+1,N,a) code |(zi, x;)] {Ga;, Ga;)|
BWie | (135,4320,1/5) | {0,1/4,1/2} | {0,1/15,1/5}

Example 3.3. Let X be the minimum vectors of the Leech lattice, and let X’ be an arbitrary
subset of X with | X’| = |X|/2 such that no pair of antipodal vectors is present in X’. We remark
that X is a spherical 11-design.

By Corollary 1.1, Gx U —Gx is a spherical 3-design in S¢, where d is as follows:

L (d+1,N,a) code [(Gs;, Ga;)|
Looch | (299, 196560, 5/23) (1/46,1/23,5/23}

(i, z;)]

{0,1/4,1/2}
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