Skip to main content
Log in

Global Existence and Long-Term Behavior of a Nonlinear Schrödinger-Type Equation

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study a global mixed problem for the nonlinear Schrödinger equation with a nonlinear term in which the coefficient is a generalized function. A global solvability theorem for the analyzed problem is proved by using the general solvability theorem from [K. N. Soltanov, Nonlin. Anal.: Theory, Meth., Appl., 72, No. 1 (2010)]. We also investigate the behavior of the solution of the problem under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Alves, M. Sepulveda, and O. Vera, “Smoothing properties for the higher-order nonlinear Schrödinger equation with constant coefficients,” J. Nonlin. Anal.: Theory, Methods, Appl., 71, 3–4 (2009).

    Article  MathSciNet  Google Scholar 

  2. A. Ambrosetti, M. Badiale, and S. Cingolani, “Semiclassical states of nonlinear Schrödinger equations,” Arch. Ration. Mech. Anal., 140, 285–300 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Ambrosetti, A. Malchiodi, and D. Ruiz, “Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity,” J. Anal. Math., 98, 317–348 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  4. T. Bartsch, A. Pankov, and Z. Q. Wang, “Nonlinear Schrödinger equations with steep potential well,” Comm. Contemp. Math., 3, 549–569 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Brezis and A. C. Ponce, “Reduced measures on the boundary,” J. Funct. Anal., 229, No. 1 (2005).

  6. Th. Cazenave, “Semilinear Schrödinger equations,” Courant Lect. Notes Math., 10 (2003).

  7. S. Cingolani, “Semiclassical stationary states of nonlinear Schrödinger equations with an external magnetic field,” J. Different. Equat., 188, 52–79 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in R 3,” Ann. Math., 167, No. 3, 767–865 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Colliander, M. Grillakis, and N. Tzirakis, “Tensor products and correlation estimates with applications to nonlinear Schrödinger equations,” Comm. Pure Appl. Math., 62, No. 7, 920–968 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  10. M. del Pino and P. Felmer, “Semiclassical states of nonlinear Schrödinger equations: A variational reduction method,” Math. Ann., 324, 1–32 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Floer and A. Weinstein, “Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,” J. Funct. Anal., 69, 397–408 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Gidas, W. M. Ni, and L. Nirenberg, “Symmetry of positive solutions of nonlinear elliptic equations in R N,” Math. Anal. Appl., Part A, Adv. in Math. Suppl. Stud. 7, 369–402 (1981).

    MathSciNet  Google Scholar 

  13. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edn., Springer-Verlag, Berlin–New York, 224 (1983).

    Book  MATH  Google Scholar 

  14. B. Grebert and L. Thomann, “Resonant dynamics for the quintic nonlinear Schrödinger equation,” Ann. Inst. H. Poincaré. Non Lineare, 29, 455–477 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Grossi, “On the number of single-peak solutions of the nonlinear Schrödinger equation,” Ann. Inst. H. Poincaré. Anal. Non Linéaire, 19, No. 3, 261–280 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  16. C. Gui, “Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method,” Comm. Part. Different. Equat., 21, 787–820 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  17. N. Hayashi, Ch. Li, and P. I. Naumkin, “Modified wave operator for a system of nonlinear Schrödinger equations in 2d,” Comm. Part. Different. Equat., 37, 947–968 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  18. C. Le Bris and P.-L. Lions, “From atoms to crystals: a mathematical journey,” Bull. Amer. Math. Soc. (N. S.), 42, No. 3, 291–363 (2005)(electronic).

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Lenells and A. S. Fokas, “On a novel integrable generalization of the nonlinear Schrodinger equation,” J. Nonlinearity, 22, No. 1, 11–27 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  20. F. Lin and P. Zhang, “Semiclassical limit of the Gross–Pitaevskii equation in an exterior domain,” Arch. Ration. Mech. Anal., 179, 79–107 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  21. J.-L. Lions and E. Magenes, Nonhomogeneous Boundary-Value Problems and Applications, Springer-Verlag, Berlin, etc., 181 (1972).

  22. V. G. Makhankov and V. K. Fedyanin, “Nonlinear effects in quasi-one-dimensional models of condensed matter theory,” Phys. Rep., 104, 1–86 (1984).

    Article  MathSciNet  Google Scholar 

  23. E. S. Noussair and C. A. Swanson, “Oscillation theory for semilinear Schrödinger equations and inequalities,” Proc. Roy. Soc. Edinburgh A, 75, 67–81 (1975/76).

  24. Y. G. Oh, “Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V ) α ,” Comm. Part. Different. Equat., 13, 1499–1519 (1988).

    Article  MATH  Google Scholar 

  25. P. H. Rabinowitz, “On a class of nonlinear Schrödinger equations,” Z. Angew. Math. Phys., 43, 270–291 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  26. P. H. Rabinowitz, “Mixed states for an Allen–Cahn type equation,” Comm. Pure Appl. Math., 56, No. 8, 1078–1134 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  27. K. N. Soltanov and M. Akhmedov, “On nonlinear parabolic equation in nondivergent form with implicit degeneration and embedding theorems,” arXiv:1207.7063 (2012), 25 p.

  28. K. N. Soltanov, “On a nonlinear equation with coefficients which are generalized functions,” Novi Sad J. Math., 41, No. 1, 43–52 (2011).

    MATH  MathSciNet  Google Scholar 

  29. K. N. Soltanov, “On semi-continuous mappings, equations, and inclusions in the Banach space,” Hacettepe J. Math. Statist., 37, No. 1 (2008).

  30. K. N. Soltanov, “Some nonlinear equations of the nonstable filtration type and embedding theorems,” J. Nonlinear Anal.: Theory, Methods, Appl., 65, 2103–2134 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  31. K. N. Soltanov, “Perturbation of the mapping and solvability theorems in the Banach space,” Nonlinear Anal.: Theory, Methods, Appl., 72, No. 1 (2010).

  32. K. N. Soltanov, “On nonlinear equation of Schrödinger type,” arXiv:1208.2560v1 (2012), 16 p.

  33. C. A. Stuart, “Lectures on the orbital stability of standing waves and application to the nonlinear Schrödinger equation,” Milan J. Math., 76, No. 1, 329–399 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  34. X. Wang and B. Zeng, “On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions,” SIAM J. Math. Anal., 28, 633–655 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  35. J. Wang, J. X. Xu, and F. B. Zhang, “Existence and multiplicity of semiclassical solutions for a Schrodinger equation,” J. Math. Anal. Appl., 357, No. 2 (2009).

  36. H. Yin and P. Zhang, “Bound states of nonlinear Schrödinger equations with potentials tending to zero at infinity,” J. Different. Equat., 247, No. 2, 618–647 (2009).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 67, No. 1, pp. 68–87, January, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltanov, K.N. Global Existence and Long-Term Behavior of a Nonlinear Schrödinger-Type Equation. Ukr Math J 67, 74–97 (2015). https://doi.org/10.1007/s11253-015-1066-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-015-1066-4

Keywords

Navigation