The Lax integrability of a two-component polynomial Burgers-type dynamical system is analyzed by using a differential-algebraic approach. Its linear adjoint matrix Lax representation is constructed. A related recursive operator and an infinite hierarchy of nonlinear Lax integrable dynamical systems of the Burgers–Korteweg–de-Vries type are obtained by the gradient-holonomic technique. The corresponding Lax representations are presented.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Similar content being viewed by others
References
D. Blackmore, A. K. Prykarpatsky, and V. H. Samoylenko, Nonlinear Dynamical Systems of Mathematical Physics,World Scientific, New York (2011).
D. Blackmore, Yu. A. Prykarpatsky, N. Bogolubov (Jr.), and A. Prykarpatsky, “Integrability of and differential-algebraic structures for spatially 1D hydrodynamical systems of Riemann type,” Chaos, Solitons and Fractals, 59, 59–81 (2014).
M. Błaszak, Bi-Hamiltonian Dynamical Systems, Springer, New York (1998).
N. N. Bogolubov (Jr.) and A. K. Prykarpatsky, “Complete integrability of the nonlinear Ito and Benney–Kaup systems: gradient algorithm and Lax representation,” Theor. Math. Phys., 67, No. 3, 586–596 (1986).
T. Chen, L.-L. Zhu, and L. Zhang , “The generalized Broer–Kaup–Kupershmidt system and its Hamiltonian extension,” Appl. Math. Sci., 5, No. 76, 3767–3780 (2011).
E. A. Coddington and N. Levinson, Theory of Differential Equations, McGraw-Hill, New York (1955).
L. D. Faddeev and L. Takhtadjan, Hamiltonian Methods in the Theory of Solitons, Springer, New York; Berlin (2000).
M. V. Foursov, “On integrable coupled Burgers-type equation,” Phys. Lett. A, 272, 57–64 (2000).
A. J. Fritz and B. Troth, “Derivation of the Leroux system as the hydrodynamic limit of a two-component lattice gas,” Comm. Math. Phys., 249, Issue 1, 1–27 (2004).
I. M. Gelfand and L. A. Dickey, “Integrable nonlinear equations and Liouville theorem,” Funct. Anal. Appl., 13, 8–20 (1979).
I. M. Gelfand and L. A. Dickey, “The calculus of jets and nonlinear Hamiltonian systems,” Funct. Anal. Appl., 12, Issue 2, 81–94 (1978).
I. M. Gelfand and L. A. Dickey, “A Lie algebra structure in a formal variational calculation,” Funct. Anal. Appl., 10, Issue 1, 16–22 (1976).
I. M. Gelfand and L. A. Dickey, “The resolvent and Hamiltonian systems,” Funct. Anal. Appl., 11, Issue 2, 93–105 (1977).
I. M. Gelfand, Yu. I. Manin, and M. A. Shubin, “Poisson brackets and the kernel of the variational derivative in the formal calculus of variations,” Funct. Anal. Appl., 10, Issue 4, 274–278 (1976).
C. Godbillon, Geometri Differentielle et Mecanique Analytique, Hermann, Paris (1969).
N. H. Ibragimov and A. B. Shabat, “Infinite Lie–Backlund algebras,” Funct. Anal. Appl., 14, 313–315 (1980).
I. Kaplanski, Introduction to Differential Algebra, New York (1957).
B. A. Kupershmidt, “Dark equations,” J. Nonlin. Math. Phys., 8, No. 3, 363–445 (2001).
B. A. Kupershmidt, “Mathematics of dispersive water waves,” Comm. Math. Phys., 99, 51–73 (1985).
P. D. Lax, “Almost periodic solutions of the KdV equation,” Source: SIAM Rev., 18, No. 3, 351–375 (1976).
J. L. Lions, Quelgues Methodes de Resolution des Problemes aux Limites Non Lineaires, Dunod, Paris (1969).
W. X. Ma, “A hierarchy of coupled Burgers systems possessing a hereditary structure,” J. Phys. A: Math. Gen., 26, L1169–L1174 (1993).
A.V. Mikhailov, A. B. Shabat, and R. I. Yamilov, “The symmetry approach to the classification of nonlinear equations. Complete list of integrable systems,” Russ. Math. Surv., 42, No. 4, 1–63 (1987).
A.V. Mikhailov, A. B. Shabat, and R. I. Yamilov, “Extension of the moduli of invertible transformations. Classification of integrable systems,” Comm. Math. Phys., 115, 1–19 (1988).
Theory of Solitons: the Inverse Scattering Method, S. P. Novikov (editor), Springer (1984).
P. Olver, Applications of Lie Groups to Differential Equations, 2nd edn., Springer, New York (1993).
A. K. Prykarpatsky, O. D. Artemovych, Z. Popowicz, and M. V. Pavlov, “Differential-algebraic integrability analysis of the generalized Riemann type and Korteweg–de Vries hydrodynamical equations,” J. Phys. A: Math. Theor., 43, 295–205 (2010).
Yu. A. Prykarpatsky, O. D. Artemovych, M. Pavlov, and A. K. Prykarpatsky, “The differential-algebraic and bi-Hamiltonian integrability analysis of the Riemann type hierarchy revisited,” J. Math. Phys., 53 (2012); doi 10.1063/1.4761821.
Yu. A. Prykarpatsky, O. D. Artemovych, M. Pavlov, and A. K. Prykarpatsky, “The differential-algebraic integrability analysis of symplectic and Lax type structures related with the hydrodynamic Riemann type systems,” Repts Math. Phys., 71, No. 3, 305–351 (2013).
Yu. A. Prykarpatsky, “Finite dimensional local and nonlocal reductions of one type of hydrodynamic systems,” Repts Math. Phys., 50, No. 3, 349–360 (2002).
A. Prykarpatsky and I. Mykytyuk, Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects, Kluwer, Dordrecht, the Netherlands (1998).
J. F. Ritt, “Differential algebra,” AMS-Colloq. Publ., Dover Publ., New York (1966), 33.
M. Shubin, Lectures on Mathematical Physics, Moscow State University, Moscow (2001).
V. V. Sokolov and T. Wolf, “Classification of integrable polynomial vector evolution equations,” J. Phys. A: Math. Gen., 34, 11139–11148 (2001).
A. Prykarpatsky, K. Soltanov, and E. Özçağ, “Differential-algebraic approach to constructing representations of commuting differentiations in functional spaces and its application to nonlinear integrable dynamical systems,” Comm. Nonlinear Sci., Numer. Simulat., 19, 1644–1649 (2014).
H. Tasso, “Hamiltonian formulation of odd Burgers hierarchy,” J. Phys. A: Math. Gen., 29, 7779–7784 (1996).
T. Tsuchida and T. Wolf, “Classification of polynomial integrable systems of mixed scalar and vector evolution equations. I,” J. Phys. A: Math. Gen., 38, 7691–7733 (2005).
G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York (1974).
G. Wilson, “On the quasi-Hamiltonian formalism of the KdV equation,” Phys. Lett., 132, No. 8/9, 445–450 (1988).
Author information
Authors and Affiliations
Additional information
Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 67, No. 2, pp. 147–162, February, 2015.
Rights and permissions
About this article
Cite this article
Blackmore, D., Prykarpatsky, A.K., Özçağ, E. et al. Integrability Analysis of a Two-Component Burgers-Type Hierarchy. Ukr Math J 67, 167–185 (2015). https://doi.org/10.1007/s11253-015-1072-6
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11253-015-1072-6