Skip to main content
Log in

On the Theory of Prime Ends for Space Mappings

  • Published:
Ukrainian Mathematical Journal Aims and scope

We present a canonical representation of prime ends in regular domains and, on this basis, study the boundary behavior of the so-called lower Q-homeomorphisms obtained as a natural generalization of quasiconformal mappings. We establish a series of effective conditions imposed on a function Q(x) for the homeomorphic extension of given mappings with respect to prime ends in domains with regular boundaries. The developed theory is applicable, in particular, to mappings of the Orlicz–Sobolev classes and also to finitely bi-Lipschitz mappings, which can be regarded as a significant generalization of the well-known classes of isometric and quasiisometric mappings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Gutlyanskii, V. Ryazanov, U. Srebro, and E. Yakubov, The Beltrami Equations: A Geometric Approach, Springer, New York (2012).

    Book  Google Scholar 

  2. F. W. Gehring, “Rings and quasiconformal mappings in space,” Trans. Amer. Math. Soc., 103, No. 3, 353–393 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  3. G. M. Goluzin, Geometric Theory of Functions of Complex Variable [in Russian], Nauka, Moscow (1966).

  4. A. A. Ignat’ev and V. I. Ryazanov, “Finite mean oscillation in the mapping theory,” Ukr. Mat. Vestn., 2, No. 3, 395–417 (2005).

    MathSciNet  MATH  Google Scholar 

  5. D. A. Kovtonyuk and V. I. Ryazanov, “On the theory of boundaries of space domains,” Tr. Inst. Prikl. Mat. Mekh., Nats. Akad. Nauk Ukr., 13, 110–120 (2006).

  6. D. A. Kovtonyuk and V. I. Ryazanov, “On the theory of lower Q-homeomorphisms,” Ukr. Mat. Vestn., 5, No. 2, 157–181 (2008).

    MathSciNet  Google Scholar 

  7. D. Kovtonyuk and V. Ryazanov, “On the boundary behavior of generalized quasi-isometries,” J. Anal. Math., 115, 103–119 (2011).

    Article  MathSciNet  Google Scholar 

  8. D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, and E. A. Sevost’yanov, “On the theory of the Orlicz–Sobolev classes,” Algebra Analiz, 25, No. 6, 49–101 (2013).

  9. D. A. Kovtonyuk, R. R. Salimov, and E. A. Sevost’yanov, On the Theory of Mappings for the Sobolev and Orlicz–Sobolev Classes [in Russian], Naukova Dumka, Kiev (2013).

  10. E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Cambridge Univ. Press, Cambridge (1966).

    Book  MATH  Google Scholar 

  11. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer, New York (2009).

    MATH  Google Scholar 

  12. R. Näkki, “Prime ends and quasiconformal mappings,” J. Anal. Math., 35, 13–40 (1979).

    Article  MATH  Google Scholar 

  13. M. Ohtsuka, Extremal Length and Precise Functions, Gakkotosho Co., Tokyo (2003).

    MATH  Google Scholar 

  14. T. Rado and P. V. Reichelderfer, Continuous Transformations in Analysis, Springer, Berlin (1955).

    Book  MATH  Google Scholar 

  15. S. Rickman, Quasiregular Mappings, Springer, Berlin (1993).

    Book  MATH  Google Scholar 

  16. V. I. Ryazanov and R. R. Salimov, “Weakly plane spaces and boundaries in the mapping theory,” Ukr. Mat. Vestn., 4, No. 2, 199–234 (2007).

    MathSciNet  Google Scholar 

  17. V. I. Ryazanov and E. A. Sevost’yanov, “Equicontinuous classes of ring Q-homeomorphisms,” Sib. Mat. Zh., 48, No. 6, 1361–1376 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Ryazanov, U. Srebro, and E. Yakubov, “On integral conditions in the mapping theory,” Ukr. Math. Bull., 7, No. 1, 73–87 (2010).

    Google Scholar 

  19. S. Saks, Theory of the Integral, Państwowe Wydawnictwo Naukowe, Warsaw (1937).

    Google Scholar 

  20. V. A. Shlyk, “On the equality of p-capacity and p-module,” Sib. Mat. Zh., 34, No. 6, 216–221 (1993).

    Article  MathSciNet  Google Scholar 

  21. A.Vasil’ev, Moduli of Families of Curves for Conformal and Quasiconformal Mappings, Springer, Berlin (2002).

  22. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Springer, Berlin (1971).

    MATH  Google Scholar 

  23. M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Springer, Berlin (1988).

    MATH  Google Scholar 

  24. G. T. Whyburn, Analytic Topology, American Mathematical Society, Providence, RI (1942).

    MATH  Google Scholar 

  25. R. L. Wilder, Topology of Manifolds, American Mathematical Society, New York (1949).

    MATH  Google Scholar 

  26. W. P. Ziemer, “Extremal length and conformal capacity,” Trans. Amer. Math. Soc., 126, No. 3, 460–473 (1967).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 67, No. 4, pp. 467–479, April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovtonyuk, D.A., Ryazanov, V.I. On the Theory of Prime Ends for Space Mappings. Ukr Math J 67, 528–541 (2015). https://doi.org/10.1007/s11253-015-1098-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-015-1098-9

Keywords

Navigation