Skip to main content
Log in

Differential Equations with Bistable Nonlinearity

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study bounded solutions of differential equations with bistable nonlinearity by numerical and analytic methods. A simple mechanical model of circular pendulum with magnetic suspension in the upper equilibrium position is regarded as a bistable dynamical system simulating a supersensitive seismograph. We consider autonomous differential equations of the second and fourth orders with discontinuous piecewise linear and cubic nonlinearities. Bounded solutions with finitely many zeros, including solitonlike solutions with two zeros and kinklike solutions with several zeros are studied in detail. It is shown that, to within the sign and translation, the bounded solutions of the analyzed equations are uniquely determined by the integer numbers \( n=\left[\frac{d}{l}\right] \) where d is the distance between the roots of these solutions and l is a constant characterizing the intensity of nonlinearity. The existence of bounded chaotic solutions is established and the exact value of space entropy is found for periodic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Aronson and H. Weinberger, “Multidimensional nonlinear diffusion arising in population genetics,” Adv. Math., 30, 33–76 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Coullet, C. Elphick, and D. Repaux, “Nature of space chaos,” Phys. Rev. Lett., 58, 431–434 (1987).

    Article  MathSciNet  Google Scholar 

  3. G. T. Dee and W. van Saarloos, “Bistable systems with propagating fronts leading to pattern formation,” Phys. Rev. Lett., 60, 2641–2644 (1988).

    Article  Google Scholar 

  4. P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Springer, New York (1979).

    Book  MATH  Google Scholar 

  5. A. Kolmogorov, I. Petrovskii, and N. Piskunov, “Investigation of the diffusion equation combined with the increase in substance and its application to one biological problem,” Byul. Moskov. Gos. Univ., Ser. A, Mat. Mekh., 1, No. 6, 1–16 (1937); French translation: “Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,” Bull. Univ. Moskou. Ser. Int. Sect. A, 1, 1–25 (1937).

  6. Y. Pomeau and P. Manneville, “Wavelength selection in cellular flows,” Phys. Lett. A, 75, 296–298 (1980).

    Article  MathSciNet  Google Scholar 

  7. J. A. Powell, A. Newell, and C. K. R. T. Jones, “Competition between generic and nongeneric fronts in envelope equations,” Phys. Rev. A, 44, 3636–3652 (1991).

    Article  Google Scholar 

  8. J. Swift and P. Hohenberg, “Hydrodynamic fluctuations at the convective instability,” Phys. Rev. A, 15, 319–328 (1977).

    Article  Google Scholar 

  9. W. Zimmermann, “Propagating fronts near a Lifschitz point,” Phys. Rev. Lett., 66, 1546 (1991).

    Article  Google Scholar 

  10. A. M. Samoilenko, Elements of the Mathematical Theory of Multi-Frequency Oscillations, Kluwer, Dordrecht (1991).

    Book  MATH  Google Scholar 

  11. A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods for the Investigation of Periodic Solutions [in Russian], Vyshcha Shkola, Kiev (1976).

    Google Scholar 

  12. A. M. Samoilenko and R. Petryshyn, Multifrequency Oscillations of Nonlinear Systems, Kluwer, Dordrecht (2004).

    MATH  Google Scholar 

  13. A. M. Samoilenko and R. I. Petryshyn, Mathematical Aspects of the Theory of Nonlinear Oscillations [in Ukrainian], Naukova Dumka, Kyiv (2004).

    Google Scholar 

  14. A. M. Samoilenko and Yu. V. Teplinskii, Elements of Mathematical Theory of Evolutionary Equations in Banach Spaces, World Scientific, Singapore (2013).

    Book  MATH  Google Scholar 

  15. L. A. Peletier, W. C. Troy, and R. C. A. M. Van der Vorst, “Stationary solutions of a fourth-order nonlinear diffusion equation,” Differents. Uravn., 31, No. 2, 327–337 (1995); English translation: Different. Equat., 31, No. 2, 301–314 (1995).

  16. G. J. B. Van den Berg, L. A. Peletier, and W. C. Troy, “Global branches of multi bump periodic solutions of the Swift–Hohenberg equation,” Arch. Ration. Mech. Anal., 158, 91–153 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  17. J. B. Van den Berg and J.-P. Lessard, “Chaotic braided solutions via rigorous numerics: chaos in the Swift–Hohenberg equation,” SIAM J. Appl. Dynam. Syst., 7, 988–1031 (2008).

    Article  MATH  Google Scholar 

  18. W. D. Kalies and R. Vander Vorst, “Multitransition homoclinic and heteroclinic solutions of extended Fisher–Kolmogorov equation,” J. Different. Equat., 131, 209–228 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  19. L. A. Peletier and W. C. Troy, “A topological shooting method and the existence of kinks of the extended Fisher–Kolmogorov equation,” Top. Meth. Nonlinear Anal., 6, No. 2, 331–355 (1995).

    MathSciNet  MATH  Google Scholar 

  20. L. A. Peletier and W. C. Troy, Spatila Patterns: Higher Order Model Equations in Physics and Mechanics, Birkhäuser, Boston (2001).

  21. A. M. Samoilenko and I. L. Nizhnik, “Kinklike solutions of fourth-order differential equations with cubic bistable nonlinearity,” Differents. Uravn., 50, No. 2, 201–209 (2014).

    MathSciNet  Google Scholar 

  22. L. A. Peletier and J. A. Rodríguez, “Homoclinic orbits to a saddle-center in a fourth-order differential equation,” J. Different. Equat., 203, 185–215 (2004).

    Article  MATH  Google Scholar 

  23. S. Albeverio and I. Nizhnik, “Spatial chaos in a fourth-order nonlinear parabolic equation,” Phys. Lett. A, 288, 299–304 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. M. Samoilenko and I. Nizhnik, “Bounded solutions of a fourth-order equation with a model bistable nonlinearity,” Ukr. Mat. Visn., 6, No. 3, 400–424 (2009); English translation: Ukr. Math. Bull., 6, No. 3, 397–420 (2009).

  25. L. A. Peletier and J. A. Rodríguez, “The discrete Swift–Hohenberg equation,” Rept Math. Inst. Leiden Univ. (2004).

  26. L. Nizhnik, M. Hasler, and I. Nizhnik, “Stable stationary solutions in reaction–diffusion systems consisting of a 1-d array of bistable cells,” Int. J. Bifur. Chaos, 2, 261–279 (2002).

    Article  MathSciNet  Google Scholar 

  27. I. Nizhnik, “Stable stationary solutions for a reaction–diffusion equation with a multi-stable nonlinearity,” Phys. Lett. A, 357, 319–322 (2006).

    Article  MATH  Google Scholar 

  28. A. F. Filippov, Differential Equations with Discontinuous Right-Hand Side [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  29. N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko, and N. V. Skripnik, Differential Equations with Impulse Effects. Multivalued Right-Hand Sides with Discontinuities, Walter de Gruyter, Berlin (2011).

  30. I. L. Nyzhnyk and A. O. Krasneeva, “Periodic solutions of second-order differential equations with discontinuous nonlinearity,” Nelin. Kolyv., 15, No. 3, 381–389 (2012); English translation: J. Math. Sci., 191, No. 3, 421–430 (2013).

  31. V. N. Pavlenko and M. S. Fedyashev, “Periodic solutions of a parabolic equation with homogeneous Dirichlet boundary condition and linearly increasing discontinuous nonlinearity,” Ukr. Mat. Zh., 64, No. 8, 1080–1088 (2012); English translation: Ukr. Math. J., 64, No. 8, 1231–1240 (2013).

  32. D. K. Potapov, Bifurcation Problems with Discontinuous Nonlinearities [in Russian], Izd. Inst. Biznesa i Prava, St.-Petersburg (2012).

  33. A. Kamachkin, D. Potapov, and V. Yevstafyeva, “Solutions to second-order differential equations with discontinuous right-hand side,” Electron. J. Different. Equat., No. 221, 1–6 (2014).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 67, No. 4, pp. 517–554, April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilenko, A.M., Nizhnik, I.L. Differential Equations with Bistable Nonlinearity. Ukr Math J 67, 584–624 (2015). https://doi.org/10.1007/s11253-015-1102-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-015-1102-4

Keywords