Skip to main content
Log in

Mixed Problems for the Two-Dimensional Heat-Conduction Equation in Anisotropic Hörmander Spaces

  • Published:
Ukrainian Mathematical Journal Aims and scope

For some anisotropic inner-product Hörmander spaces, we prove the theorems on well-posedness of initial-boundary-value problems for the two-dimensional heat-conduction equation with Dirichlet or Neumann boundary conditions. The regularity of the functions from these spaces is characterized by a couple of numerical parameters and a function parameter regularly varying at infinity in Karamata’s sense and characterizing the regularity of functions more precisely than in the Sobolev scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. S. Agranovich and M. I. Vishik, “Elliptic problems with parameter and parabolic problems of the general form,” Usp. Mat. Nauk, 19, No. 3, 53–161 (1964).

    MATH  Google Scholar 

  2. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of the Parabolic Type [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  3. J.-L. Lions and E. Magenes, Non-Homogeneous Boundary-Value Problems and Applications, Springer, Berlin (1972).

    Book  Google Scholar 

  4. N. V. Zhitarashu, “Theorems on complete collection of isomorphisms in the L 2-theory of generalized solutions for one equation parabolic in Petrovskii’s sense,” Mat. Sb., 128(170), No. 4, 451–473 (1985).

  5. N. V. Zhitarashu and S. D. Éidel’man, Parabolic Boundary-Value Problems [in Russian], Shtiintsa, Kishinev (1992).

  6. S. D. Eidel’man, “Parabolic equations,” in: Encyclopedia of Mathematical Sciences, Vol. 63, Partial Differential Equations, VI, Springer, Berlin (1994), pp. 205–316.

  7. S. D. Ivasishen, Green Matrices of Parabolic Boundary-Value Problems [in Russian], Vyshcha Shkola, Kiev (1990).

    Google Scholar 

  8. B. Paneah, The Oblique Derivative Problem. The Poincaré Problem, Wiley, Berlin (2000).

  9. H. Triebel, The Structure of Functions, Birkhäuser, Basel (2001).

  10. F. Nicola and L. Rodino, Global Pseudodifferential Calculus on Euclidean Spaces, Birkhäuser, Basel (2010).

    Book  Google Scholar 

  11. V. A. Mikhailets and A. A. Murach, “Improved scale of spaces and elliptic boundary-value problems. II,” Ukr. Math. J., 58, No. 3, 398–417 (2006).

    Article  MathSciNet  Google Scholar 

  12. V. A. Mikhailets and A. A. Murach, “Refined scale of spaces and elliptic boundary-value problems. III,” Ukr. Math. J., 59, No. 5, 744–765 (2007).

    Article  MathSciNet  Google Scholar 

  13. A. A. Murach, “Elliptic pseudo-differential operators in a refined scale of spaces on a closed manifold,” Ukr. Math. J., 59, No. 6, 874–893 (2007).

    Article  MathSciNet  Google Scholar 

  14. V. A. Mikhailets and A. A. Murach, “An elliptic boundary-value problem in a two-sided refined scale of spaces,” Ukr. Math. J., 60, No. 4, 574–597 (2008).

    Article  MathSciNet  Google Scholar 

  15. V. A. Mikhailets and A. A. Murach, Ho¨rmander Spaces, Interpolation, and Elliptic Problems, De Gruyter, Berlin (2014).

    Google Scholar 

  16. V. A. Mikhailets and A. A. Murach, “The refined Sobolev scale, interpolation, and elliptic problems,” Banach J. Math. Anal., 6, No. 2, 211–281 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  17. V. A. Mikhailets and A. A. Murach, “Interpolation with a function parameter and refined scale of spaces,” Meth. Funct. Anal. Topol., 14, No. 1, 81–100 (2008).

    MathSciNet  MATH  Google Scholar 

  18. L. Hörmander, Linear Partial Differential Operators, Springer, Berlin (1963).

    Book  MATH  Google Scholar 

  19. L. P. Volevich and B. P. Paneyakh, “Some spaces of generalized functions and embedding theorems,” Usp. Mat. Nauk, 20, No. 1, 3–74 (1965).

    MATH  Google Scholar 

  20. V. Los and A. A. Murach, “Parabolic problems and interpolation with a function parameter,” Meth. Funct. Anal. Top., 19, No. 2, 146–160 (2013).

    MathSciNet  MATH  Google Scholar 

  21. V. M. Los’ and O. O. Murach, “On the smoothness of solutions of parabolic mixed problems,” in: Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv, 10, No. 2 (2013), pp. 219–234.

  22. V. N. Los’ and A. A. Murach, “Parabolic mixed problems in spaces of generalized smoothness,” Dopov. Nats. Akad. Nauk Ukr., No. 6, 23–31 (2014).

  23. P. I. Lizorkin, “Spaces of generalized smoothness,” in: H. Triebel, Theory of Function Spaces [Russian translation], Mir, Moscow (1986), pp. 381–415.

  24. W. Farkas and H.-G. Leopold, “Characterizations of function spaces of generalized smoothness,” Ann. Mat. Pura Appl., 185, No. 1, 1–62 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  25. L. N. Slobodetskii, “Generalized Sobolev spaces and their application to boundary-value problems for partial differential equations,” Uchen. Zap. Leningrad. Gos. Ped. Inst., 197, 54–112 (1958).

    Google Scholar 

  26. V. A. Solonnikov, “A priori estimates for the second-order equations of parabolic type,” Tr. Mat. Inst. SSSR, 70, 133–212 (1964).

    MathSciNet  MATH  Google Scholar 

  27. J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin (1976).

    Book  MATH  Google Scholar 

  28. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd edn., J. A. Barth, Heidelberg (1995).

  29. O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral Representations of Functions and Embedding Theorems [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  30. E. Seneta, Regularly Varying Functions, Springer, Berlin (1976).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 67, No. 5, pp. 645–656, May, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Los’, V.M. Mixed Problems for the Two-Dimensional Heat-Conduction Equation in Anisotropic Hörmander Spaces. Ukr Math J 67, 735–747 (2015). https://doi.org/10.1007/s11253-015-1111-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-015-1111-3

Keywords

Navigation