Skip to main content
Log in

Classification of Finite Commutative Semigroups for Which the Inverse Monoid of Local Automorphisms is a ∆-Semigroup

  • Published:
Ukrainian Mathematical Journal Aims and scope

A semigroup S is called a ∆-semigroup if the lattice of its congruences forms a chain relative to the inclusion. A local automorphism of the semigroup S is called an isomorphism between its two subsemigroups. The set of all local automorphisms of the semigroup S relative to the ordinary operation of composition of binary relations forms an inverse monoid of local automorphisms. We present a classification of finite commutative semigroups for which the inverse monoid of local automorphisms is a ∆-semigroup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vols. 1, 2, American Mathematical Society, Providence, RI (1964, 1967).

  2. B. M. Schein, “Commutative semigroups where congruences form a chain,” Bull. Acad. Pol. Sci., Sér. Sci. Math., Astron. Phys., 17, 523–527 (1969).

    MathSciNet  MATH  Google Scholar 

  3. B. M. Schein, “Corrigenda to ‘Commutative semigroups where congruences form a chain,” Bull. Acad. Pol. Sci., Sér. Sci. Math., Astron. Phys., 12, 1247 (1975).

    MathSciNet  Google Scholar 

  4. T. Tamura, “Commutative semigroups whose lattice of congruences is a chain,” Bull. Soc. Math. France, 97, 369–380 (1969).

    MathSciNet  MATH  Google Scholar 

  5. C. Bonzini and A. Cherubini, “Sui ∆-semigrouppi di Putcha,” Inst. Lombardo Acad. Sci. Lett. Rend. A, 114, 179–194 (1980).

    MathSciNet  MATH  Google Scholar 

  6. A. Nagy, “Weakly exponential ∆-semigroups,” Semigroup Forum, 40, 297–313 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Nagy, “RC-commutative ∆-semigroups,” Semigroup Forum, 44, 332–340 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Nagy, “On the structure of (m, n)-commutative semigroups,” Semigroup Forum, 45, 183–190 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Nagy, “Semilattice decomposition of n 2-permutative semigroups,” Semigroup Forum, 46, 16–20 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Nagy, “RGC n -commutative ∆-semigroups,” Semigroup Forum, 57, 92–100 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Nagy, “Right commutative ∆-semigroups,” Acta Sci. Math. (Szeged), 66, 33–45 (2000).

    MathSciNet  MATH  Google Scholar 

  12. A. Nagy and P. R. Jones, “Permutative semigroups whose congruences form a chain,” Semigroup Forum, 69, 446–456 (2004).

    MathSciNet  MATH  Google Scholar 

  13. A. Nagy, Notes on a Problem on Weakly Exponential-Semigroups, arXiv:1305.5427v1 [math.GR] (2013).

  14. B. Pondĕlíček, “On generalized conditionally commutative semigroups,” Math. Slovaca, 44, No. 3, 359–364 (1994).

    MathSciNet  MATH  Google Scholar 

  15. R. Strecker, “H-commutative ∆-semigroups,” Rostock Math. Kolloq., 49, 98–104 (1995).

    MathSciNet  MATH  Google Scholar 

  16. P. G. Trotter, “Exponential ∆-semigroups,” Semigroup Forum, 12, 313–331 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Trotter and T. Tamura, “Completely semisimple inverse ∆-semigroups admitting principal series,” Pacif. J. Math., 68, No. 2, 515–525 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  18. V. D. Derech, “Congruences of a permutable inverse semigroup of finite rank,” Ukr. Mat. Zh., 57, No. 4, 469–473 (2005); English translation: Ukr. Math. J., 57, No. 4, 565–570 (2005).

  19. M. I. Kargapolov and Yu. I. Merzlyakov, Foundations of the Theory of Groups [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  20. V. D. Derech, “Classification of finite commutative semigroups for which the inverse monoid of local automorphisms is permutable,” Ukr. Mat. Zh., 64, No. 2, 176–184 (2012); English translation: Ukr. Math. J., 64, No. 2, 198–207 (2012).

  21. V. D. Derech, “On quasiorders on some inverse semigroups,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 3, 76–78 (1991).

  22. V. H. Fernandes, “The monoid of all injective order preserving partial transformations on a finite chain,” Semigroup Forum, 62, 178–204 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Hamilton, “Permutability of congruences on commutative semigroups,” Semigroup Forum, 10, 55–66 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  24. T. N. Sharonova, “Congruences on semigroups of linear operators,” Dop. Akad. Nauk Ukr. RSR, Ser. A, No. 1, 17–19 (1971).

  25. T. N. Sharonova, “Congruences on the semigroup of all mutually single-valued partial linear transformations,” in: Abstr. of the 17th All-Union Algebraic Conf. (Minsk, September 14–17, 1983) [in Russian], Minsk (1983), p. 275.

  26. A. Artin, Geometric Algebra, Interscience, New York (1957).

    MATH  Google Scholar 

  27. A. E. Liber, “On symmetric generalized groups,” Mat. Sb., 33, No. 3, 531–544 (1953).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 67, No. 7, pp. 867–873, July, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derech, V.D. Classification of Finite Commutative Semigroups for Which the Inverse Monoid of Local Automorphisms is a ∆-Semigroup. Ukr Math J 67, 981–988 (2015). https://doi.org/10.1007/s11253-015-1130-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-015-1130-0

Keywords

Navigation