Skip to main content
Log in

Dynamical Bifurcation of Multifrequency Oscillations in a Fast-Slow System

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study a dynamical analog of bifurcations of invariant tori for a system of interconnected fast phase variables and slowly varying parameters. It is shown that, in this system, due to the slow evolution of the parameters, we observe the appearance of transient processes (from the damping process to multifrequency oscillations) asymptotically close to motions on the invariant torus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. M. Krylov and N. N. Bogolyubov, Application of the Methods of Nonlinear Mechanics to the Theory of Stationary Oscillations [in Russian], Akad. Nauk Ukr. SSR, Kiev (1934).

    Google Scholar 

  2. Yu. I. Neimark, “On some cases of dependence of periodic motions on parameters,” Dokl. Akad. Nauk SSSR, 129, No. 4, 736–739 (1959).

    MathSciNet  MATH  Google Scholar 

  3. R. Sacker, “A new approach to the perturbation theory of invariant surfaces,” Comm. Pure Appl. Math., 18, 717–732 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Ruelle and F. Takens, “On the nature of turbulence,” Comm. Math. Phys., 20, 167–192 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Marsden and M. McCracken, Hopf Bifurcation and Its Applications, Springer, New York (1976).

    Book  MATH  Google Scholar 

  6. Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York (1998).

    MATH  Google Scholar 

  7. J. K. Hale, “Integral manifolds of perturbed differential systems,” Ann. Math. (2), 73, No. 3, 496–531 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  8. N. N. Bogolyubov, Yu. A. Mitropol’skii, and A. M. Samoilenko, Method of Accelerated Convergence in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1969).

    Google Scholar 

  9. N. Fenichel, “Persistence and smoothness of invariant manifolds and flows,” Indiana Univ. Math., 21, No. 3, 193–226 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  10. Yu. A. Mitropol’skii and A. M. Samoilenko, “On asymptotic integration of weakly nonlinear systems,” Ukr. Mat. Zh., 28, No. 4, 483–500 (1976); English translation: Ukr. Math. J., 28, No. 4, 372–386 (1976).

  11. A. M. Samoilenko, Elements of the Mathematical Theory of Multi-Frequency Oscillations, Kluwer, Dordrecht (1991).

    Book  MATH  Google Scholar 

  12. A. M. Samoilenko, “Perturbation theory of smooth invariant tori of dynamical systems,” Nonlin. Anal., 30, No. 5, 3121–3133 (1997).

    Article  MATH  Google Scholar 

  13. A. M. Samoilenko and R. I. Petryshyn, Mathematical Aspects of the Theory of Nonlinear Oscillations [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2004).

    Google Scholar 

  14. W. Langford, “Periodic and steady mode interactions lead to tori,” SIAM J. Appl. Math., 37, 22–48 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  15. N. K. Gavrilov, “On bifurcations of the equilibrium state with two pairs of pure imaginary roots,” in: Methods of the Qualitative Theory of Differential Equations [in Russian], Izd. Gorkii Gos. Univ., Gorkii (1980), pp. 17–30.

    Google Scholar 

  16. Yu. N. Bibikov, “Bifurcation of a stable invariant torus from the equilibrium state,” Mat. Zametki, 48, Issue 1, 15–19 (1990).

    MathSciNet  Google Scholar 

  17. Yu. N. Bibikov, Multifrequency Nonlinear Oscillations and Their Bifurcations [in Russian], Leningradskii Universitet, Leningrad (1991).

    Google Scholar 

  18. Ya. M. Goltser, “On the bifurcation of invariant tori in the mappings, with a spectrum on a unit circle,” Funct. Different. Equat., 5, No. 1–2, 121–138 (1998).

    MathSciNet  MATH  Google Scholar 

  19. Yu. N. Bibikov and V. R. Bukaty, “Multifrequency oscillations of singularly perturbed systems,” Differents. Uravn., 48, No. 1, 21–26 (2012).

    MathSciNet  Google Scholar 

  20. M. A. Shishkova, “Investigation of one system of differential equations with small parameter at higher derivatives,” Dokl. Akad. Nauk SSSR, 209, No. 3, 576–579 (1973).

    MathSciNet  Google Scholar 

  21. A. I. Neishtadt, “Asymptotic investigation of the loss of stability of equilibrium as a result of the slow transition of a pair of eigenvalues through the imaginary axis,” Usp. Mat. Nauk, 40, No. 5, 300–301 (1985).

    MathSciNet  Google Scholar 

  22. A. I. Neishtadt, “On the delay of the loss of stability for dynamical bifurcations,” Differents. Uravn., 23, No. 12, 2060–2067 (1987); 24, No. 2, 226–233 (1988).

  23. A. Neishtadt, “On stability loss delay for dynamical bifurcations,” Discrete Contin. Dynam. Syst., Ser. 2, 2, No. 4, 897–909 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  24. É Benoît (editor), Dynamic Bifurcations, Springer, Berlin (1991).

    Book  MATH  Google Scholar 

  25. V. F. Butuzov, N. N. Nefedov, and K. R. Schneider, “Singularly perturbed problems in the case of exchange of stabilities,” J. Math. Sci., 121, No. 1, 1973–2079 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Rachinskii and K. Schneider, “Dynamic Hopf bifurcations generated by nonlinear terms,” J. Different. Equat., 210, No. 1, 65–86 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  27. O. D. Anosova, “Invariant manifolds and dynamical bifurcations,” Usp. Mat. Nauk., 60, No. 1, 157–158 (2005).

    Article  MathSciNet  Google Scholar 

  28. P. Cartier, “Singular perturbations of ordinary differential equations and nonstandard analysis,” Usp. Mat. Nauk, 39, No. 2, 57–76 (1984).

    MathSciNet  MATH  Google Scholar 

  29. S. Liebscher, “Dynamics near manifolds of equilibria of codimension one and bifurcation without parameters,” Electron. J. Different. Equat., 2011, No. 63, 1–12 (2001); URL: http://ejde.math.txstate.edu .

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 67, No. 7, pp. 890–915, July, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilenko, A.M., Parasyuk, I.O. & Repeta, B.V. Dynamical Bifurcation of Multifrequency Oscillations in a Fast-Slow System. Ukr Math J 67, 1008–1037 (2015). https://doi.org/10.1007/s11253-015-1133-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-015-1133-x

Keywords

Navigation