Skip to main content
Log in

Estimation of the Accuracy of Finite-Element Petrov–Galerkin Method in Integrating the One-Dimensional Stationary Convection-Diffusion-Reaction Equation

  • Published:
Ukrainian Mathematical Journal Aims and scope

The accuracy and convergence of the numerical solutions of a stationary one-dimensional linear convection-diffusion-reaction equation (with Dirichlet boundary conditions) by the Petrov–Galerkin finiteelement method with piecewise-linear basis functions and piecewise-quadratic weighting functions are analyzed and the accuracy estimates of the method are obtained in certain norms depending on the choice of the collection of stabilization parameters of weight functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Finlayson, Numerical Methods for Problems with Moving Fronts, Ravenna Park Publishing, Seattle (1992).

    Google Scholar 

  2. V. S. Deineka, I. V. Sergienko, and V. V. Skopetskii, Mathematical Models and Methods of Analysis in Problems with Discontinuous Solutions [in Russian], Naukova Dumka, Kiev (1995).

    Google Scholar 

  3. H.-G. Roos, M. Stynes, and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer, Berlin (2008).

    MATH  Google Scholar 

  4. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  5. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for the Solution of Convection-Diffusion Equations [in Russian], Nauka, Moscow (2009).

    Google Scholar 

  6. C. Grossmann, H.-G. Roos, and M. Stynes, Numerical Treatment of Partial Differential Equations, Springer, Berlin (2007).

    Book  MATH  Google Scholar 

  7. T. P. Fries and H. G. Matthies, A Review of Petrov–Galerkin Stabilization Approaches and an Extension to Mesh-Free Methods, Technische Universität Braunschweig, Informatikbericht 2004-1, Brunswick (2004).

    Google Scholar 

  8. T. J. R. Hughes, G. Scovazzi, and T. E. Tezduyar, “Stabilized methods for compressible flows,” J. Sci. Comput., 43, 343–368 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  9. V. John and E. Schmeyer, “Finite-element methods for time-dependent convection-diffusion-reaction equations with small diffusion,” Comput. Meth. Appl. Mech. Eng., 198, 475–494 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. V. Sirik, “Exactness and stability of the Petrov–Galerkin method in the integration of the stationary convection-diffusion equation,” Kibernet. Sistem. Anal., 50, No. 2, 32–143 (2014).

    Google Scholar 

  11. D. F. Griffiths and J. Lorenz, “An analysis of the Petrov–Galerkin finite element method,” Comput. Meth. Appl. Mech. Eng., 14, 39–64 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  12. K. W. Morton, “Finite element methods for nonself-adjoint problems,” in: P. R. Turner (editor), Proc. of the SERC Summer School (Lancaster, 1981), 965, Springer, Berlin (1982), pp. 113–148.

  13. D. F. Griffiths, “Discretized eigenvalue problems, LBB constants and stabilization,” Numer. Anal., Longman, Edinburgh, 57–75 (1996).

  14. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin (1983).

    Book  MATH  Google Scholar 

  15. S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton (1965).

    MATH  Google Scholar 

  16. A. R. Mitchell and R. Wait, The Finite Element Method in Partial Differential Equations, Wiley, New York (1977).

    MATH  Google Scholar 

  17. K. Rektorys, Variational Methods in Mathematics, Science and Engineering, Reidel, Dordrecht (1980).

    MATH  Google Scholar 

  18. O. A. Ladyzhenskaya, Boundary-Value Problems of Mathematical Physics [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  19. I. Babuška and A. K. Aziz, “Survey lectures on the mathematical foundations of the finite element method,” in: A. K. Aziz (editor), The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York (1972), pp. 2–363.

    Google Scholar 

  20. N. N. Sal’nikov, S. V. Sirik, and I. A. Tereshchenko, “On the construction of a finite-dimensional mathematical model of the convection-diffusion process with the use of the Petrov–Galerkin method,” Probl. Upravl. Inform., No. 3, 94–109 (2010).

    Google Scholar 

  21. S. V. Sirik, N. N. Sal’nikov, and V. K. Beloshapkin, “The choice of weight functions in the Petrov–Galerkin method for the integration of linear one-dimensional convection-diffusion equations,” Upravl. Sist. Mash., No. 1, 38–47 (2014).

    Google Scholar 

  22. J. Xu and L. Zikatanov, “Some observations on the Babuška and Brezzi theories,” Numer. Math., 94, 195–202 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  23. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge (1986).

    Google Scholar 

  24. K. Dekker and J. G. Verwer, Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations, North-Holland, Amsterdam (1984).

    MATH  Google Scholar 

  25. C. A. Desoer and H. Haneda, “The measure of a matrix as a tool to analyze computer algorithms for circuit analysis,” IEEE Trans. Circ. Theory, 19, No. 5, 480–486 (1972).

    Article  MathSciNet  Google Scholar 

  26. A. A. Samarskii and A. V. Gulin, Numerical Methods of Mathematical Physics [in Russian], Nauch. Mir, Moscow (2003).

  27. S. Noschese, L. Pasquini, and L. Reichel, “Tridiagonal Toeplitz matrices: properties and novel applications,” Numer. Linear Algebra Appl., 20, No. 2, 302–326 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  28. S. C. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, Springer, Berlin (2007).

    Google Scholar 

  29. V. C. L. Hutson and J. S. Pym, Application of Functional Analysis and Operator Theory, Academic Press, London (1983).

    Google Scholar 

  30. K.-J. Bathe, D. Hendriana, F. Brezzi, and G. Sangalli, “Inf-sup testing of upwind methods,” Int. J. Numer. Meth. Eng., 48, 745–760 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Sangalli, “Numerical evaluation of finite element methods in convection-diffusion problems,” Calcolo, 37, 233–251 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  32. G. Sangalli, “Numerical evaluation of FEM with application to the 1-D advection-diffusion problem,” Math. Models Meth. Appl. Sci., 12, No. 2, 205–228. (2002).

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Buffa, C. de Falco, and G. Sangalli, “Isogeometric analysis: stable elements for the 2D Stokes equation,” Int. J. Numer. Meth. Fluids, 65, 1407–1422 (2011).

    Article  MATH  Google Scholar 

  34. E. Abramov, H. Kvasnytsya, and H. Shynkarenko, “Partially quadratic and cubic approximations of h -adaptive FEM for onedimensional boundary-value problems,” Visn. Lviv. Univ., Ser. Prykl. Mat. Inform., Issue 17, 47–61 (2011).

  35. V. M. Trushevs’kyi and H. Shynkarenko, “Parallel approximation of elliptic boundary-value problems with artificial neuroboundary with radial basis functions,” Visn. Lviv. Univ., Ser. Prykl. Mat. Inform., Issue 22, 108–117 (2014).

  36. A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia (1994).

    Book  MATH  Google Scholar 

  37. C. A. J. Fletcher, Computational Galerkin Methods, Springer, New York (1984).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 67, No. 7, pp. 937–961, July, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirik, S.V. Estimation of the Accuracy of Finite-Element Petrov–Galerkin Method in Integrating the One-Dimensional Stationary Convection-Diffusion-Reaction Equation. Ukr Math J 67, 1062–1090 (2015). https://doi.org/10.1007/s11253-015-1135-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-015-1135-8

Keywords