Skip to main content
Log in

Vertex Operator Representations of Type C (1) l and Product-Sum Identities

  • Published:
Ukrainian Mathematical Journal Aims and scope

We construct a class of homogeneous vertex representations of C (1) l , l ≥ 2, and deduce a series of product-sum identities. These identities have fine interpretation in the number theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. E. Andrews, “q-series: their development and application in analysis, number theory, combinatorics, physics and computer algebra,” CBMS Reg. Conf. Ser. Math., Amer. Math. Soc., Providence, RI, 66 (1986).

  2. D. M. Bressoud, “Analytic and combinational generalizations of the Rogers–Ramanujan identities,” Mem. Amer. Math. Soc., 24 No. 227 (1980).

  3. L. Carlitz and M. V. Subbarao, “A simple proof of the quintuple product identity,” Proc. Amer. Math. Soc., 32, 42–44 (1978).

    Article  MathSciNet  Google Scholar 

  4. I. B. Frenkel, J. Lepowsky, and A. Meurman, Vertex Operator Algerbas and the Monster, Academic Press, Boston (1989).

    Google Scholar 

  5. Y. Gao, “Vertex operators arising from the homogenous realization for \( {\overset{\frown }{gl}}_N \),” Comm. Math. Phys., 159, 1–13 (1994).

    Article  MathSciNet  Google Scholar 

  6. N. Jing and L. Xia, “Representations of affine Lie algebras and product-sum identities,” J. Algebra, 314, No. 2, 538–552 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  7. V. G. Kac, Infinite-Dimensional Lie Algebras, 3 rd ed, Cambridge Univ. Press, Cambridge, U.K. (1990).

    Book  MATH  Google Scholar 

  8. J. Lepowsky and R. Wilson, “The structure of standard modules. I. Universal algebras and the Rogers–Ramanujan identities,” Invent. Math., 77, 199–290 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Lepowsky and R. Wilson, “The structure of standard modules. II. The case A (1)1 , principal gradation,” Invent. Math., 79, 417–442 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Liu and N. Hu, “Vertex representations of the toroidal Lie algebra of type G (1)2 ,” J. Pure Appl. Algebra, 198, 257–279 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  11. K. C. Misra, “Realization of level one standard \( {\tilde{C}}_{2k+1} \) -modules,” Trans. Amer. Math. Soc., 321, No. 2, 483–504 (1990).

    MathSciNet  MATH  Google Scholar 

  12. I. Schur, “Zur additiven Zahlentheorie,” S. B. Preuss. Akad. Wiss. Phys. Math. Kl, 488–495 (1926).

  13. L. Xia and N. Hu, “Irreducible representations for Virasoro-toroidal Lie algebras,” J. Pure Appl. Algebra, 194, 213–237 (2004).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 66, No. 2, pp. 226–243, February, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, LM., Hu, N. Vertex Operator Representations of Type C (1) l and Product-Sum Identities. Ukr Math J 66, 253–272 (2014). https://doi.org/10.1007/s11253-014-0927-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-014-0927-6

Keywords

Navigation