Skip to main content
Log in

Approximation of the Classes H Ω p of Periodic Functions of Many Variables in the Space L p

  • Published:
Ukrainian Mathematical Journal Aims and scope

We establish upper estimates for the approximation of the classes H Ω p of periodic functions of many variables by polynomials constructed by using the system obtained as the tensor product of the systems of functions of one variable. These results are then used to establish the exact-order estimates of the orthoprojective widths for the classes H Ω p in the space L p with p ∈ {1, ∞}.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Pustovoitov, “Representation and approximation of periodic functions of many variables with given mixed modulus of continuity,” Anal. Math., 20, 35–48 (1994).

    Article  MathSciNet  Google Scholar 

  2. S. M. Nikol’skii, “Functions with dominating mixed derivative satisfying the multiple H¨older condition,“ Sib. Mat. Zh., 4, No. 6, 1342–1364 (1963).

    Google Scholar 

  3. N. K. Bari and S. B. Stechkin, “Best approximations and differential properties of two conjugate functions,” Tr. Mosk. Mat. Obshch., bob 5, 483–522 (1956).

  4. N. N. Pustovoitov, “Approximation of many-dimensional functions with given majorant of mixed moduli of continuity,” Mat. Zametki, 65, No. 1, 107–117 (1999).

    Article  MathSciNet  Google Scholar 

  5. V. N. Temlyakov, Approximation of Periodic Functions, Nova Science Publishers, New York (1993).

    MATH  Google Scholar 

  6. S. A. Smolyak, “Quadrature and interpolation formulas for tensor products of some classes of functions,” Dokl. Akad. Nauk SSSR, 148, No. 5, 1042–1045 (1963).

    MATH  MathSciNet  Google Scholar 

  7. V. N. Temlyakov, “Approximate reconstruction of periodic functions of several variables,” Mat. Sb., 128, No. 2, 256–268 (1985).

    MathSciNet  Google Scholar 

  8. Dinh Dung, “Optimal recovery of functions of a certain mixed smoothness,” J. Math., 20, No. 2, 18–32 (1992).

    MATH  MathSciNet  Google Scholar 

  9. A.V. Andrianov and V. N. Temlyakov, “On two methods of generalization of the properties of systems of functions of one variable to their tensor product,” Tr. Mat. Inst. Ros. Akad. Nauk, 219, 32–43 (1997).

    MathSciNet  Google Scholar 

  10. W. Sickel and T. Ullrich, “The Smolyak algorithm, sampling on sparse grids and function spaces of dominating mixed smoothness,” E. J. Approxim., 13, No. 4, 387–425 (2007).

    MathSciNet  Google Scholar 

  11. P. I. Lizorkin and V. N. Temlyakov, “Spaces of functions of mixed smoothness from the decomposition point of view,” Tr. Mat. Inst. Akad. Nauk SSSR, 187, No. 3, 143–161 (1989).

    Google Scholar 

  12. A. S. Romanyuk, “Widths and the best approximation of the classes B r p,θ of periodic functions of many variables,” Anal. Math., 37, No. 3, 181–213 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  13. S. M. Nikol’skii, Approximation of Functions of Many Variables and Imbedding Theorems [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  14. S. A. Stasyuk, “Best approximations of the periodic functions of many variables from the classes B r p,θ ,Mat. Zametki, 87, No. 1, 108–121 (2010).

    Article  MathSciNet  Google Scholar 

  15. V. N. Temlyakov, “Widths of some classes of functions of several variables,” Dokl. Akad. Nauk SSSR, 267, No. 2, 314–317 (1982).

    MathSciNet  Google Scholar 

  16. V. N. Temlyakov, “Approximation of functions with bounded mixed derivative,” Tr. Mat. Inst. Akad. Nauk SSSR, 178, 3–113 (1986).

    MathSciNet  Google Scholar 

  17. É. M. Galeev, “Orders of the orthoprojective widths of classes of periodic functions of one and several variables,” Mat. Zametki, 43, No. 2, 197–211 (1988).

    MATH  Google Scholar 

  18. A. S. Romanyuk and V. S. Romanyuk, “Trigonometric and orthoprojection widths of the classes of periodic functions of many variables,” Ukr. Mat. Zh., 61, No. 10, 1348–1366 (2009); English translation: Ukr. Math. J., 61, No. 10, 1589–1609 (2009).

    Article  MathSciNet  Google Scholar 

  19. Al. A. Privalov, “On one orthogonal trigonometric basis,” Mat. Sb., 182, No. 3, 384–394 (1991).

    MATH  MathSciNet  Google Scholar 

  20. D. Offin and K. I. Oskolkov, “A note on orthonormal polynomial bases and wavelets,” Constr. Approxim., 9, No. 2, 319–325 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  21. O. V. Fedunyk, “Estimates for the approximating characteristics of the classes B r p,θ of periodic functions of many variables in the space Lq,” in: Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv [in Ukrainian], 2, No. 2 (2005), pp. 268–294.

  22. S. A. Stasyuk and O. V. Fedunyk, “Approximation characteristics of the classes B r p,θ of periodic functions of many variables,” Ukr. Mat. Zh., 58, No. 5, 692–704 (2006); English translation: Ukr. Math. J., 58, No. 5, 779–793 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 66, No. 5, pp. 634–644, May, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derev’yanko, N.V. Approximation of the Classes H Ω p of Periodic Functions of Many Variables in the Space L p . Ukr Math J 66, 707–718 (2014). https://doi.org/10.1007/s11253-014-0966-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-014-0966-z

Keywords

Navigation