Skip to main content
Log in

Linear Methods for Summing Fourier Series and Approximation in Weighted Lebesgue Spaces with Variable Exponents

  • Published:
Ukrainian Mathematical Journal Aims and scope

In the present work, we study the estimates for the periodic functions of linear operators constructed on the basis of their Fourier series in weighted Lebesgue spaces with variable exponent and Muckenhoupt weights. In this case, the obtained estimates depend on the sequence of the best approximation in weighted Lebesgue spaces with variable exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Akgün and V. Kokilashvili, “On converse theorems of trigonometric approximation in weighted variable exponent Lebesgue spaces,” Banach J. Math. Anal., 5, No. 1, 70–82 (2011).

    Article  MathSciNet  Google Scholar 

  2. R. Akgün, “Trigonometric approximation of functions in generalized Lebesgue spaces with variable exponent,” Ukr. Math. J., 63, No. 1, 1–26 (2011).

    Article  Google Scholar 

  3. L. Diening, P. Höstö, and A. Nekvinda, “Open problems in variable exponent and Sobolev spaces,” Function Spaces, Different. Operators and Nonlinear Anal.: Proc. Conf. in Milovy (Bohemian-Moravian Uplands, May 29–June 2, 2004), Praha (2005), pp. 38–58.

  4. V. G. Gavriljuk, “Linear summation methods for the Fourier series and best approximation,” Ukr. Math. Zh., 15, No. 4, 412–418 (1963).

    MathSciNet  Google Scholar 

  5. A. Guven, “Trigonometric, approximation of functions in weighted L p spaces,” Sarajevo J. Math., 5, No. 17, 99–108 (2009).

    MathSciNet  Google Scholar 

  6. A. Guven and D. M. Israfilov, “Approximation by means of Fourier trigonometric series in weighted Orlicz spaces,” Adv. Stud. Contemp. Math. (Kyundshang), 19, No. 2, 283–295 (2009).

    MathSciNet  Google Scholar 

  7. I. I. Ibragimov and D. I. Mamedkhanov, “Constructive characterization of a certain class of functions,” Dokl. Akad. Nauk SSSR, 223, No. 1, 35–37 (1975).

    MathSciNet  Google Scholar 

  8. D. M. Israfilov, “Approximation by p-Faber polynomials in the weighted Smirnov class E p (G,w) and the Bieberbach polynomials,” Constr. Approxim., 17, 335–351 (2001).

    Article  MathSciNet  Google Scholar 

  9. D. M. Israfilov and R. Akgün, “Approximation in weighted Smirnov–Orlicz classes,” J. Math. Kyoto Univ., 46, 755–770 (2006).

    MathSciNet  Google Scholar 

  10. D. M. Israfilov and Ali Guven, “Approximation by trigonometric polynomials in weighted Orlicz spaces,” Stud. Math., 174, No. 2, 147–168 (2006)

    Article  Google Scholar 

  11. D. M. Israfilov, V. Kokilashvili, and S. G. Samko, “Approximation in weighted Lebesgue spaces and Smirnov spaces with variable exponent,” Proc. Razmadze Math. Inst., 143, 25–35 (2007).

    MathSciNet  Google Scholar 

  12. S. Z. Jafarov, “Approximation by rational functions in Smirnov–Orlicz classes,” J. Math. Anal. Appl., 379, 870–877 (2011).

    Article  MathSciNet  Google Scholar 

  13. S. Z. Jafarov, “Approximation by polynomials and rational functions in Orlicz spaces,” J. Comput. Anal. Appl., 13, No. 5, 953–962 (2011).

    MathSciNet  Google Scholar 

  14. S. Z. Jafarov, “The inverse theorem of approximation of the function in Smirnov–Orlicz classes,” Math. Inequal. Appl., 12, No. 4, 835–844 (2012).

    MathSciNet  Google Scholar 

  15. S. Z. Jafarov, “On approximation in weighted Smirnov–Orlicz classes,” Complex Variables and Elliptic Equat., 57, No. 5, 567–577 (2012).

    Article  MathSciNet  Google Scholar 

  16. V. Kokilashvili and S. G. Samko, “Singular integrals in weighted Lebesgue spaces with variable exponent,” Georg. Math. J., 10, No. 1, 145–156 (2003).

    MathSciNet  Google Scholar 

  17. V. Kokilashvili and S. Samko, “Singular integrals and potentials in some Banach function spaces with variable exponent,” J. Funct. Spaces Appl., 1, No. 1, 45–59 (2003).

    Article  MathSciNet  Google Scholar 

  18. V. Kokilashvili and S. G. Samko, “Operators of harmonic analysis in weighted spaces with nonstandard growth,” J. Math. Anal. Appl., 352, 15–34 (2009).

    Article  MathSciNet  Google Scholar 

  19. V. Kokilashvili and S. G. Samko, “A refined inverse inequality of approximation in weighted variable exponent Lebesgue spaces,” Proc. Razmadze Math. Inst., 151, 134–138 (2009).

    MathSciNet  Google Scholar 

  20. V. Kokilashvili and Ts. Tsanava, “On the norm estimate of deviation by linear summability means and an extension of the Bernstein inequality,” Proc. Razmadze Math. Inst., 154, 144–146 (2010)

    MathSciNet  Google Scholar 

  21. V. Kokilashvili, “On a progress in the theory of integral operators in weighted Banach function spaces,” Function Spaces, Different. Operators and Nonlinear Anal.: Proc. Conf. held in Milovy (Bohemian-Moravian Uplands, May 29–June 2, 2004), Praha (2005), pp. 152–174.

  22. O. Kováčik and J. Rákosnik, “On spaces L p(x) and W k,p(x),” Czechoslovak Math. J., 41, No. 116, 592–618 (1991).

    MathSciNet  Google Scholar 

  23. D. M. Mamedkhanov, Approximation in Complex Plane and Singular Operators with Cauchy Kernels [in Russian], Doctoral-Degree Thesis (Physics and Mathematics), Tbilisi (1984).

  24. S. G. Samko, “Differentiation and integration of variable order an the spaces L p(x),” Operator Theory for Complex and Hypercomplex Analysis (Mexico City, 1994). Contemp. Math., 212, 203–219 (1998).

    Article  MathSciNet  Google Scholar 

  25. S. G. Samko, “On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators,” Integral Transforms Spec. Funct., 16, No. 5-6, 461–482 (2005).

    Article  MathSciNet  Google Scholar 

  26. S. B. Stechkin, “Approximation of periodic functions by Fejér sums,” Trudy Math. Inst. Steklov, 2, 48–60 (1961).

    Google Scholar 

  27. I. I. Sharapudinov, “Topology of the space L p(t) ([0, 1]),” Mat. Zametki, 26, No. 4, 613–632 (1979).

    MathSciNet  Google Scholar 

  28. I. I. Sharapudinov, “Approximation of functions in the metric of the space L p(t) ([a, b]) and quadrature,” [in Russian], Constructive Function Theory 81 (Varna, 1981), Publ. House Bulgar. Acad. Sci., Sofia (1983), pp. 189–193.

  29. M. F. Timan, “Best approximation of a function and linear methods for the summation of Fourier series,” Izv. Akad. Nauk SSSR Ser. Math., 29, 587– 604 (1965).

    MathSciNet  Google Scholar 

  30. M. F. Timan, “Approximation of continuous periodic functions by linear operators constructed on the basis of their Fourier series,” Dokl. Akad. Nauk SSSR, 181, 1339–1342 (1968).

    MathSciNet  Google Scholar 

  31. M. F. Timan, “Some linear summation processes for the Fourier series and the best approximation,” Dokl. Akad. Nauk SSSR, 145, 741–743 (1962).

    MathSciNet  Google Scholar 

  32. M. F. Timan, “Deviation of harmonic functions from their boundary values and the best approximation,” Dokl. Akad. Nauk SSSR, 145, 1008–1009 (1962).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 66, No. 10, pp. 1348–1356, October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarov, S.Z. Linear Methods for Summing Fourier Series and Approximation in Weighted Lebesgue Spaces with Variable Exponents. Ukr Math J 66, 1509–1518 (2015). https://doi.org/10.1007/s11253-015-1027-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-015-1027-y

Keywords

Navigation