Skip to main content
Log in

Quasiperiodic Extremals of Nonautonomous Lagrangian Systems on Riemannian Manifolds

  • Published:
Ukrainian Mathematical Journal Aims and scope

The paper deals with a quasiperiodically excited natural Lagrangian system on a Riemannian manifold. We find sufficient conditions under which this system has a weak Besicovitch quasiperiodic solution minimizing the averaged Lagrangian. It is proved that this solution is indeed a twice continuously differentiable uniformly quasiperiodic function, and the corresponding system in variations is exponentially dichotomous on the real axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Blot, “Calculus of variations in mean and convex Lagrangians,” J. Math. Anal. Appl., 134, No. 2, 312–321 (1988).

    Article  MathSciNet  Google Scholar 

  2. J. Blot, “Calculus of variations in mean and convex Lagrangians II,” Bull. Aust. Math. Soc., 40, No. 3, 457–463 (1989).

    Article  MathSciNet  Google Scholar 

  3. J. Blot, “Calculus of variations in mean and convex Lagrangians III,” Israel J. Math., 67, No. 3, 337–344 (1989).

    Article  MathSciNet  Google Scholar 

  4. M. S. Berger and Zhang Luping, “A new method for large quasiperiodic nonlinear oscillations with fixed frequencies for nondissipative second order conservative systems of second type,” Commun. Appl. Nonlin. Anal., 3, No. 1, 25–49 (1996)

    MathSciNet  Google Scholar 

  5. J. Mawhin, “Bounded and almost periodic solutions of nonlinear differential equations: variational vs nonvariational approach,” Calculus of Variations and Differential Equations. Research Notes in Mathematics, Chapman & Hall/CRC, Boca Raton, 410, 167–184 (2000).

    MathSciNet  Google Scholar 

  6. S. F. Zakharin and I. O. Parasyuk, “Generalized and classical almost periodic solutions of Lagrangian systems,” Funkcial. Ekvac., 42, 325–338 (1999).

    MathSciNet  Google Scholar 

  7. S. F. Zakharin and I. O. Parasyuk, “Generalized quasiperiodic solutions of Lagrangian systems on Riemannian manifolds of nonpositive curvature,” Bull. Kyiv. Univ. (Visnyk Kyiv. Univ.), Iss. 3, 15–20 (1999).

  8. S. F. Zakharin and I. O. Parasyuk, “On smoothness of generalized quasiperiodic solutions of Lagrangian systems on Riemannian manifolds of nonpositive curvature,” Nelin. Kolyv., 2, No. 2, 180–193 (1999).

    MathSciNet  Google Scholar 

  9. M. Ayachi and J. Blot, “Variational methods for almost periodic solutions of a class of neutral delay equations,” Abstr. Appl. Anal., 2008, ID 153285, 13 p. (2008).

  10. J. Kuang, “Variational approach to quasi-periodic solution of nonautonomous second-order Hamiltonian systems,” Abstr. Appl. Anal., 2012, ID 271616, 14 p. (2012).

  11. I. Parasyuk and A. Rustamova, “Variational approach for weak quasiperiodic solutions of quasiperiodically excited Lagrangian systems on Riemannian manifolds,” Electron. J. Different. Equat., 2012, No. 66, 1–22 (2012).

    MathSciNet  Google Scholar 

  12. J. Blot and D. Pennequin, “Spaces of quasi-periodic functions and oscillations in differential equations,” Acta. Appl. Math., 65, No. 1–3, 83–113 (2001).

    Article  MathSciNet  Google Scholar 

  13. D. Gromol, W. Klingenberg, and W. Meyer, Riemannsche Geometrie im Grossen, Springer-Verlag, Berlin–Heidelberg–New York (1968).

    Book  Google Scholar 

  14. J. Nash, “The embedding problem for Riemannian manifolds,” Ann. Math., 63, No. 1, 20–63 (1956).

    Article  MathSciNet  Google Scholar 

  15. A. M. Samoilenko, Elements of the Mathematical Theory of Multi-Frequency Oscillations, Kluwer Academic Publishers, Dordrecht (1991).

    Book  Google Scholar 

  16. A. S. Besicovitch, Almost Periodic Functions, Dover Publ., New York (1955).

    Google Scholar 

  17. J. Marcinkiewicz, “Une remarque sur les espaces de M. Besicowitch,” C. R. Acad. Sci. Paris, 208, 157–159 (1939).

    Google Scholar 

  18. H. Bohr and E. Fölner, “On some types of function spaces. A contribution to the theory of almost periodic functions,” Acta Math., 76, 31–155 (1945)

    Article  MathSciNet  Google Scholar 

  19. L. I. Danilov, “On the uniform approximation of Weil almost periodic and Besicovitch almost periodic functions,” Izv. In-ta Matematiki Informatiki UdGU, 35, No. 1, 33–48 (2006).

    Google Scholar 

  20. S. M. Nikol’skii, A Course of Mathematical Analysis [in Russian], Nauka, Moscow, Vol. 2 (1983)

    Google Scholar 

  21. E. Landau, “Ungleichungen f¨ur zweimal differenzierbare Funktionen,” Proc. London Math. Soc., 13, 43–49 (1913).

    Google Scholar 

  22. A. M. Samoilenko, “On the exponential dichotomy on ℝ of linear differential equations in ℝn ,Ukr. Math. J., 53, No. 3, 407–426 (2002).

    Article  Google Scholar 

  23. B. P. Demidovich, Lectures on the Mathematical Theory of Stability [in Russian], Nauka, Moscow (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 66, No. 10, pp. 1387–1406, October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parasyuk, I.O. Quasiperiodic Extremals of Nonautonomous Lagrangian Systems on Riemannian Manifolds. Ukr Math J 66, 1553–1574 (2015). https://doi.org/10.1007/s11253-015-1031-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-015-1031-2

Keywords

Navigation