Skip to main content
Log in

Critical Points Approaches to Elliptic Problems Driven by a p(x)-Laplacian

  • Published:
Ukrainian Mathematical Journal Aims and scope

We establish the existence of at least three solutions for elliptic problems driven by a p(x)-Laplacian. The existence of at least one nontrivial solution is also proved. The approaches are based on the variational methods and critical-point theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. N. Antontsev and J. F. Rodrigues, “On stationary thermo-rheological viscous flows,” Ann. Univ. Ferrara. Sez. VII, 52, 19–36 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  2. S. N. Antontsev and S. I. Shmarev, “A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness, and localization properties of solutions,” Nonlin. Anal., 60, 515–545 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Averna and G. Bonanno, “A mountain pass theorem for a suitable class of functions,” Rocky Mountain J. Math., 39, 707–727 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Averna and G. Bonanno, “A three critical points theorem and its applications to the ordinary Dirichlet problem,” Top. Meth. Nonlin. Anal., 22, 93–103 (2003).

    MATH  MathSciNet  Google Scholar 

  5. G. Bonanno, “A critical point theorem via the Ekeland variational principle,” Nonlinear Anal., 75, 2992–3007 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Bonanno and P. Candito, “Nondifferentiable functionals and applications to elliptic problems with discontinuous nonlinearities,” J. Different. Equat., 244, 3031–3059 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Bonanno and A. Chinnì, “Discontinuous elliptic problems involving the p(x)-Laplacian,” Math. Nachr., 284, 639–652 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Bonanno and A. Chinnì, “Multiple solutions for elliptic problems involving the p(x)-Laplacian,” Le Matematiche, 66, Fasc. I, 105–113 (2011).

  9. G. Bonanno and A. Chinnì, “A Neumann boundary-value problem for the Sturm–Liouville equation,” Appl. Math. and Comput., 15, 318–327 (2009).

    Article  Google Scholar 

  10. G. Bonanno, B. Di Bella, and D. O’Regan, “Nontrivial solutions for nonlinear fourth-order elastic beam equations,” Comput. and Math. Appl., 62, 1862–1869 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Bonanno, S. Heidarkhani, and D. O’Regan, “Multiple solutions for a class of Dirichlet quasilinear elliptic systems driven by a (p, q)-Laplacian operator,” Dynam. Syst. Appl., 20, 89–100 (2011).

    MATH  MathSciNet  Google Scholar 

  12. G. Bonanno and S. A. Marano, “On the structure of the critical set of nondifferentiable functions with a weak compactness condition,” Appl. Anal., 89, 1–10 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Bonanno and P. F. Pizzimenti, “Neumann boundary-value problems with not coercive potential,” Mediterr. J. Math., DOI 10. 1007/s00009-011-0136-6.

  14. G. Bonanno and A. Sciammentta, “An existence result of one nontrivial solution for two-point boundary-value problems,” Bull. Austral. Math. Soc., 84, 288–299 (2011).

    Article  MATH  Google Scholar 

  15. H. Brézis, Analyse Functionelle-Théorie et Applications, Masson, Paris (1983).

    Google Scholar 

  16. Y. Chen, S. Levine, and M. Rao, “Variable exponent linear growth functional in image restoration,” SIAM J. Appl. Math., 66, No. 4, 1383–1406 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  17. X. L. Fan and S. G. Deng, “Remarks on Ricceri’s variational principle and applications to the p(x)-Laplacian equations,” Nonlin. Anal., 67, 3064–3075 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  18. X. L. Fan and X. Han, “Existence and multiplicity of solutions for p(x)-Laplacian equations in R N,” Nonlin. Anal., 59, 173–188 (2004).

    MATH  MathSciNet  Google Scholar 

  19. X. L. Fan, J. Shen, and D. Zhao, “Sobolev embedding theorems for spaces W k,p(x),” J. Math. Anal. Appl., 262, 749–760 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  20. X. L. Fan and Q. H. Zhang, “Existence of solutions for p(x)-Laplacian Dirichlet problem,” Nonlin. Anal., 52, 1843–1852 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  21. X. L. Fan and Q. H. Zhang, “On the spaces L p(x)(Ω) and W m,p(x),” J. Math. Anal. Appl., 263, 424–446 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  22. B. Ge and Q. M. Zhou, “Multiple solutions to a class of inclusion problem with the p(x)-Laplacian,” Appl. Anal., 91, 895–909 (2001).

    Article  MathSciNet  Google Scholar 

  23. B. Ge and Q. M. Zhou, “Three solutions for a differential inclusion problem involving the p(x)-Kirchhoff-type,” Appl. Anal., 1–12 (2011).

  24. P. Harjulehto, P. Hästö, and V. Latvala, “Minimizers of the variable exponent, nonuniformly convex Dirichlet energy,” J. Math. Pures Appl., 89, 174–197 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  25. S. Heidarkhani and J. Henderson, “Critical point approaches to quasilinear second-order differential equations depending on a parameter,” Top. Meth. Nonlin. Anal., 44, No. 1, 177–197 (2014).

    MathSciNet  Google Scholar 

  26. C. Ji, “Remarks on the existence of three solutions for the p(x)-Laplacian equations,” Nonlin. Anal., 74, 2908–2915 (2011).

    Article  MATH  Google Scholar 

  27. M. Kováčik and J. Rákosník, “On the spaces L p(x)(Ω) and W 1,p(x),” Czechoslovak Math., 41, 592–618 (1991).

    MathSciNet  Google Scholar 

  28. B. Ricceri, “A general variational principle and some of its applications,” J. Comput. Appl. Math., 113, 401–410 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Ružička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin (2000).

    Google Scholar 

  30. V. V. Zhikov, “Averaging of functionals in the variational calculus and elasticity theory,” Math. Izv. (USSR), 9, 33–66 (1987).

    Article  Google Scholar 

  31. E. Zeidler, Nonlinear Functional Analysis and Its Applications, Springer, Berlin etc., Vol. 2 (1985).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 66, No. 12, pp. 1676–1693, December, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidarkhani, S., Ge, B. Critical Points Approaches to Elliptic Problems Driven by a p(x)-Laplacian. Ukr Math J 66, 1883–1903 (2015). https://doi.org/10.1007/s11253-015-1057-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-015-1057-5

Keywords

Navigation