Skip to main content
Log in

Invariant measures for discrete dynamical systems and ergodic properties of generalized Boole-type transformations

  • Published:
Ukrainian Mathematical Journal Aims and scope

Invariant ergodic measures for generalized Boole-type transformations are studied by using an invariant quasimeasure generating function approach based on special solutions for the Frobenius–Perron operator. New two-dimensional Boole-type transformations are introduced and their invariant measures and ergodicity properties are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aaronson, “Ergodic theory for inner functions of the upper half plane,” Ann. Inst. H. Poincare B, 14, 233–253 (1978).

    MathSciNet  MATH  Google Scholar 

  2. J. Aaronson, “A remark on the exactness of inner functions,” J. London Math. Soc., 23, 469–474 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Aaronson, “The eigenvalues of nonsingular transformations,” Isr. J. Math., 45, 297–312 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Aaronson, “An introduction to infinite ergodic theory,” 50, American Mathematical Society (1997).

  5. M. J. Ablowitz and A. S. Fokas, Complex Variables: Introduction and Applications, Cambridge Univ. Press (1997).

  6. R. Adler and B. Weiss, “The ergodic, infinite measure preserving transformation of Boole,” Isr. J. Math., 16, 263–278 (1973).

    Article  MathSciNet  Google Scholar 

  7. D. Blackmore, A. K. Prykarpatsky, and Y. A. Prykarpatsky, “Isospectral integrability analysis of dynamical systems on discrete manifolds,” Opusc. Math., 32, No. 1, 39–54 (2012).

    MathSciNet  Google Scholar 

  8. D. Blackmore, A. K. Prykarpatsky, and V. H. Samoylenko, Nonlinear Dynamical Systems of Mathematical Physics, World Scientific, New York (2011).

    Book  MATH  Google Scholar 

  9. N. N. Bogolyubov, Yu. A. Mitropolsky, and A. M. Samoilenko, Methods of Accelerated Convergence in Nonlinear Mechanics, Springer (1976).

  10. G. Boole, “On the comparison of transcendents with certain applications to the theory of definite integrals,” Phil. Trans. Roy. Soc. London, 147, 745–803 (1857).

    Article  Google Scholar 

  11. G. Hardy, Convergent Series, Cambridge Press (1947).

  12. O. E. Hentosh, M. M. Prytula, and A. K. Prykarpatsky, Differential-Geometric Integrability Fundamentals of Nonlinear Dynamical Systems on Functional Manifolds [in Ukrainian], 2nd revised ed., Lviv University, Lviv (2006).

  13. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press (1999).

  14. M. G. Krein and A. A. Nudelman, The Markov Moment Problem and Extremal Tasks [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  15. M. Pollycott and M. Yuri, “Dynamical systems and ergodic theory,” London Math. Soc., Cambridge Univ. Press. Student Texts, 40 (1998).

  16. G. Polya and H. Sego, Problems and Solutions, Springer, New York (1982).

    Google Scholar 

  17. I. I. Privalov, Boundary Properties of Analytic Functions [in Russian], Gostekhizdat, Moscow (1950).

    Google Scholar 

  18. A. K. Prykarpatsky, “On invariant measure structure of a class of ergodic discrete dynamical systems,” J. Nonlin. Oscillat., 3, No. 1, 78–83 (2000).

    MathSciNet  MATH  Google Scholar 

  19. A. K. Prykarpatsky and S. Brzychczy, “On invariant measure structure of a class of ergodic discrete dynamical systems,” Proc. Internat. Conf. SCAN 2000/Interval 2000, Sept. 19–22, Karlsruhe, Germany (2000).

  20. A. K. Prykarpatsky and J. Feldman, “On the ergodic and special properties of generalized Boole transformations,” Proc. Internat. Conf. “Difference Equations, Special Functions and Orthogonal Polynomials” (Munich, July 25–30, 2005, Germany (2005), pp. 527–536.

  21. R. Z. Sagdeev, D. A. Usikov, and G. M. Zaslavsky, Nonlinear Physics: From the Pendulum to Turbulence and Chaos, Harwood Acad. Publ. (1988).

  22. Ya. G. Sinai, Ergodic Theory [in Russian], Nauka, Moscow (1984).

  23. A.V. Skorokhod, Elements of the Probability Theory and Causal Processes [in Russian], Vyshcha Shkola, Kyiv (1975).

    Google Scholar 

  24. T. Takagi, “A simple example of the continuous function without derivative,” Proc. Phys. Math. Soc. Jap., 1, 176–177 (1903).

    Google Scholar 

  25. R. Wheedon and A. Zygmund, Measure and Integral: an Introduction to Real Analysis, Marcel Decker, Inc., New York; Basel (1977).

  26. M. Yamaguti and M. Hata, “Weierstrass’s function and chaos,” Hokkaido Math. J., 12, 333–342 (1983).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 65, No. 1, pp. 44–57, January, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blackmore, D., Golenia, J., Prykarpatsky, A.K. et al. Invariant measures for discrete dynamical systems and ergodic properties of generalized Boole-type transformations. Ukr Math J 65, 47–63 (2013). https://doi.org/10.1007/s11253-013-0764-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-013-0764-z

Keywords

Navigation