Skip to main content
Log in

Extended Sobolev Scale and Elliptic Operators

  • Published:
Ukrainian Mathematical Journal Aims and scope

We obtain a constructive description of all Hilbert function spaces that are interpolation spaces with respect to a pair of Sobolev spaces \( \left[ {{H^{{\left( {{s_0}} \right)}}}\left( {{{\mathbb{R}}^n}} \right),{H^{{\left( {{s_1}} \right)}}}\left( {{{\mathbb{R}}^n}} \right)} \right] \) of some integer orders s 0 and s 1 and form an extended Sobolev scale. We propose equivalent definitions of these spaces with the use of uniformly elliptic pseudo-differential operators positive-definite in \( {L_2}\left( {{{\mathbb{R}}^n}} \right) \). Possible applications of the introduced scale of spaces are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. A. Mikhailets and A. A. Murach, Hörmander Spaces, Interpolation, and Elliptic Problems [in Russian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2010). (Available at arXiv: 1106.3214.)

    Google Scholar 

  2. V. A. Mikhailets and A. A. Murach, “The refined Sobolev scale, interpolation, and elliptic problems,” Banach J. Math. Anal., 6, No. 2, 211–281 (2012).

    MathSciNet  MATH  Google Scholar 

  3. L. Hörmander, Linear Partial Differential Operators, Springer, Berlin (1963).

    Book  MATH  Google Scholar 

  4. L. Hörmander, The Analysis of Linear Partial Differential Operators. II: Differential Operators with Constant Coefficients, Springer, Berlin (1983).

    Book  MATH  Google Scholar 

  5. L. R. Volevich and B. P. Paneah, “Certain spaces of generalized functions and embedding theorems,” Rus. Math. Surv., 20, No. 1, 1–73 (1965).

    Article  Google Scholar 

  6. V. A. Mikhailets and A. A. Murach, “Elliptic operators in a refined scale of function spaces,” Ukr. Math. J., 57, No. 5, 817–825 (2005).

    Article  MathSciNet  Google Scholar 

  7. V. A. Mikhailets and A. A. Murach, “Improved scale of spaces and elliptic boundary-value problems. II,” Ukr. Math. J., 58, No. 3, 398–417 (2006).

    Article  MathSciNet  Google Scholar 

  8. V. A. Mikhailets and A. A. Murach, “A regular elliptic boundary-value problem for a homogeneous equation in a two-sided improved scale of spaces,” Ukr. Math. J., 58, No. 11, 1748–1767 (2006).

    Article  MathSciNet  Google Scholar 

  9. V. A. Mikhailets and A. A. Murach, “Refined scale of spaces and elliptic boundary-value problems. III,” Ukr. Math. J., 59, No. 5, 744–765 (2007).

    Article  MathSciNet  Google Scholar 

  10. V. A. Mikhailets and A. A. Murach, “An elliptic boundary-value problem in a two-sided refined scale of spaces,” Ukr. Math. J., 60, No. 4, 574–597 (2008).

    Article  MathSciNet  Google Scholar 

  11. V. A. Mikhailets and A. A. Murach, “Elliptic problems and H¨ormander spaces,” Oper. Theory: Adv. Appl., 191, 447–470 (2009).

    MathSciNet  Google Scholar 

  12. B. Paneah, The Oblique Derivative Problem. The Poincaré Problem, Wiley, Berlin (2000).

    MATH  Google Scholar 

  13. E. Seneta, Regularly Varying Functions, Springer, Berlin (1976).

    Book  MATH  Google Scholar 

  14. N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge (1989).

    MATH  Google Scholar 

  15. J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin (1976).

    Book  MATH  Google Scholar 

  16. C. Foias¸ and J.-L. Lions, “Sur certains théorèmes d’interpolation,” Acta Sci. Math. (Szeged), 22, No. 3–4, 269–282 (1961).

    MathSciNet  MATH  Google Scholar 

  17. J. Peetre, “On interpolation functions. II,” Acta Sci. Math. (Szeged), 29, No. 1–2, 91–92 (1968).

    MathSciNet  MATH  Google Scholar 

  18. V. I. Ovchinnikov, “The methods of orbits in interpolation theory,” Math. Rep. Ser. 1, No. 2, 349–515 (1984).

  19. M. S. Agranovich, “Elliptic operators on closed manifolds,” in: Encyclopedia of Mathematical Sciences, Partial Differential Equations, VI, 63, Springer, Berlin (1994), pp. 1–130.

    Chapter  Google Scholar 

  20. H. Triebel, The Structure of Functions, Birkhäuser, Basel (2001).

    Book  MATH  Google Scholar 

  21. N. Jacob, Pseudodifferential Operators and Markov Processes (in 3 volumes), Imperial College Press, London (2001, 2002, 2005).

    Book  Google Scholar 

  22. F. Nicola and L. Rodino, Global Pseudodifferential Calculus on Euclidean Spaces, Birkhäuser, Basel (2010).

    Book  Google Scholar 

  23. A. A. Murach, “Elliptic pseudodifferential operators in a refined scale of spaces on a closed manifold,” Ukr. Math. J., 59, No. 6, 874–893 (2007).

    Article  MathSciNet  Google Scholar 

  24. V. A. Mikhailets and A. A. Murach, “Interpolation with a function parameter and refined scale of spaces,” Meth. Funct. Anal. Topol., 14, No. 1, 81–100 (2008).

    MathSciNet  MATH  Google Scholar 

  25. A. A. Murach, “Douglis–Nirenberg elliptic systems in the refined scale of spaces on a closed manifold,” Meth. Funct. Anal. Topol., 14, No. 2, 142–158 (2008).

    MathSciNet  MATH  Google Scholar 

  26. V. A. Mikhailets and A. A. Murach, “Elliptic systems of pseudodifferential equations in the refined scale on a closed manifold,” Bull. Pol. Acad. Sci. Math., 56, No. 3–4, 213–224 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  27. A. A. Murach, “On elliptic systems in Hörmander spaces,” Ukr. Math. J., 61, No 3, 467–477 (2009).

    Article  MathSciNet  Google Scholar 

  28. T. N. Zinchenko and A. A. Murach, “Douglis–Nirenberg elliptic systems in Hörmander spaces,” 64, No. 11, 1477–1491 (2012); English translation: Ukr. Math. J., 64, No. 11, 1672–1687 (2012).

    Article  MathSciNet  Google Scholar 

  29. V. A. Mikhailets and A. A. Murach, “On the unconditional almost-everywhere convergence of general orthonormal series,” Ukr. Math. J., 63, No. 10, 1543–1550 (2012).

    Article  MATH  Google Scholar 

  30. V. A. Mikhailets and A. A. Murach, “General forms of the Menshov–Rademacher, Orlicz, and Tandori theorems on orthogonal series,” Meth. Funct. Anal. Topol., 17, No. 4, 330–340 (2011).

    MathSciNet  MATH  Google Scholar 

  31. M. Hegland, “Error bounds for spectral enhancement which are based on variable Hilbert scale inequalities,” J. Integral Equat. Appl., 22, No. 2, 285–312 2010).

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Mathé and U. Tautenhahn, “Interpolation in variable Hilbert scales with application to inverse problems,” Inverse Problems, 22, No. 6, 2271–2297 (2006).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 65, No. 3, pp. 392–404, March, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhailets, V.A., Murach, A.A. Extended Sobolev Scale and Elliptic Operators. Ukr Math J 65, 435–447 (2013). https://doi.org/10.1007/s11253-013-0787-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-013-0787-5

Keywords

Navigation