Skip to main content
Log in

Order Estimates for the Best Approximations and Approximations by Fourier Sums of the Classes of (ψ, β)-Differential Functions

  • Published:
Ukrainian Mathematical Journal Aims and scope

We establish exact-order estimates for the best uniform approximations by trigonometric polynomials on the classes C ψ β, p of 2π-periodic continuous functions f defined by the convolutions of functions that belong to the unit balls in the spaces L p , 1 ≤ p < ∞, with generating fixed kernels Ψβ ⊂ L p, \( \frac{1}{p}+\frac{1}{{p^{\prime}}}=1 \), whose Fourier coefficients decrease to zero approximately as power functions. Exactorder estimates are also established in the L p -metric, 1 < p ≤ ∞, for the classes L ψ β,1 of 2π -periodic functions f equivalent in terms of the Lebesgue measure to the convolutions of kernels Ψβ ⊂ L p with functions from the unit ball in the space L 1. It is shown that, in the investigated cases, the orders of the best approximations are realized by Fourier sums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. I. Stepanets, Methods of Approximation Theory [in Russian], Vol. 1, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2002).

  2. N. P. Korneichuk, Extremal Problems of Approximation Theory [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  3. V. N. Temlyakov, Approximation of Periodic Functions, Nova Science Publishers, New York (1993).

    MATH  Google Scholar 

  4. A. Kolmogoroff, “Zur Grössennordnung des Restgliedes Fourierschen Reihen differenzierbarer Funktionen,” Ann. Math., 36, No. 2, 521–526 (1935).

    Article  MathSciNet  Google Scholar 

  5. V. T. Pinkevich, “On the order of the remainder for the Fourier series of Weyl differentiable functions,” Izv. Akad. Nauk SSSR, Ser. Mat., 4, No. 6, 521–528 (1940).

    Google Scholar 

  6. S. M. Nikol’skii, “Approximation of periodic functions by trigonometric polynomials,” Tr. Mat. Inst. Akad. Nauk SSSR, 15, 1–76 (1945).

    Google Scholar 

  7. S. M. Nikol’skii, “Approximation of periodic functions by trigonometric polynomials in the mean,” Izv. Akad. Nauk SSSR, Ser. Mat., 10, No. 3, 207–256 (1946).

    Google Scholar 

  8. A.V. Efimov, “Approximation of continuous periodic functions by Fourier sums,” Izv. Akad. Nauk SSSR, Ser. Mat., 24, No 2, 243–296 (1960).

    MATH  MathSciNet  Google Scholar 

  9. S. A. Telyakovskii, “On the norms of trigonometric polynomials and approximation of differentiable functions by linear means of their Fourier series,” Tr. Mat. Inst. Akad. Nauk SSSR, 62, 61–97 (1961).

    Google Scholar 

  10. J. Favard, “Sur l’approximation des fonctions périodiques par des polynomes trigonométriques,” C. R. Acad. Sci., 203, 1122–1124 (1936).

    Google Scholar 

  11. J. Favard, “Sur les meilleurs procédes d’approximations de certains classes de fontions par des polynomes trigonométriques,” Bull. Sci. Math., 61, 209–224, 243–256 (1937).

    Google Scholar 

  12. V. K. Dzyadyk, “On the best approximation on a class of periodic functions with bounded sth derivative (0 < s < 1),” Izv. Akad. Nauk SSSR, Ser. Mat., 17, 135–162 (1953).

    MathSciNet  Google Scholar 

  13. V. K. Dzyadyk, “On the best approximation on classes of periodic functions defined by integrals of linear combinations of absolutely monotone kernels,” Mat. Zametki, 16, No. 5, 691–701 (1974).

    MATH  MathSciNet  Google Scholar 

  14. S. B. Stechkin, “On the best approximation of some classes of periodic functions by trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat., 20, 643–648 (1956).

    MATH  MathSciNet  Google Scholar 

  15. Sun Young-Sheng, “On the best approximation of periodic differentiable functions by trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat., 23, No. 1, 67–92 (1959).

    MathSciNet  Google Scholar 

  16. V. F. Babenko and S. A. Pichugov, “On the best linear approximation of some classes of differentiable periodic functions,” Mat. Zametki, 27, No. 5, 683–689 (1980).

    MATH  MathSciNet  Google Scholar 

  17. A. I. Stepanets and A. K. Kushpel’, “Convergent rate of Fourier series and best approximations in the space L p , ” Ukr. Mat. Zh., 39, No. 4, 483–492 (1987); English translation: Ukr. Math. J., 39, No. 4, 389–398 (1987).

  18. A. I. Stepanets, Methods of Approximation Theory [in Russian], Vol. 2, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2002).

  19. V. S. Romanyuk, “Additions to the estimates of the approximation of classes of infinitely differentiable functions by Fourier sums,” in: Extremal Problems of the Theory of Functions and Related Problems [in Ukrainian], Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, 46, Kyiv (2003), pp. 131–135.

  20. A. I. Stepanets, Classification and Approximation of Periodic Functions [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  21. A. S. Serdyuk and I. V. Sokolenko, “Uniform approximation of the classes of (ψ, \( \bar{\beta} \))-differentiable functions by linear methods,” in: Extremal Problems of the Theory of Functions and Related Problems [in Ukrainian], Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, 8, No. 1 (2011), pp. 181–189.

  22. N. K. Bari, Trigonometric Series [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  23. A. Zygmund, Trigonometric Series [Russian translation], Vol. 1, Mir, Moscow (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 65, No. 9, pp. 1186–1197, September, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hrabova, U.Z., Serdyuk, A.S. Order Estimates for the Best Approximations and Approximations by Fourier Sums of the Classes of (ψ, β)-Differential Functions. Ukr Math J 65, 1319–1331 (2014). https://doi.org/10.1007/s11253-014-0861-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-014-0861-7

Keywords

Navigation