Skip to main content
Log in

On the Orlicz–Sobolev Classes and Mappings with Bounded Dirichlet Integral

  • Published:
Ukrainian Mathematical Journal Aims and scope

It is shown that homeomorphisms f in \( {{\mathbb{R}}^n} \), n ≥ 2, with finite Iwaniec distortion of the Orlicz–Sobolev classes W 1,φ loc under the Calderon condition on the function φ and, in particular, the Sobolev classes W 1,φ loc, p > n - 1, are differentiable almost everywhere and have the Luzin (N) -property on almost all hyperplanes. This enables us to prove that the corresponding inverse homeomorphisms belong to the class of mappings with bounded Dirichlet integral and establish the equicontinuity and normality of the families of inverse mappings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Suvorov, Generalized Principle of Length and Area in the Theory of Mappings [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  2. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk (1982).

    Google Scholar 

  3. S. K. Vodop’yanov and V. M. Gol’dshtein, Sobolev Spaces and Special Classes of Mappings [in Russian], Novosibirsk University, Novosibirsk (1981).

    Google Scholar 

  4. V. M. Gol’dshtein and Yu. G. Reshetnyak, Introduction to the Theory of Functions with Generalized Derivatives and Quasiconformal Mappings [in Russian], Nauka, Novosibirsk (1983).

    Google Scholar 

  5. S. K. Vodop’yanov, “Mappings with bounded distortion and finite distortion on Carnot groups,” Sib. Mat. Zh., 40, No. 4, 764–804 (1999).

    Article  MathSciNet  Google Scholar 

  6. T. Iwaniec and V. Sverák, “On mappings with integrable dilatation,” Proc. Amer. Math. Soc., 118, 181–188 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Iwaniec and G. Martin, Geometrical Function Theory and Non-Linear Analysis, Clarendon Press, Oxford (2001).

    Google Scholar 

  8. G. Federer, Geometric Theory of Measure [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  9. M. A. Krasnosel’skii and Ya.V. Rutitskii, Convex Functions and Orlicz Spaces [in Russian], Fizmatgiz, Moscow (1958).

  10. V. G. Maz’ya, Sobolev Spaces [in Russian], Leningrad University, Leningrad (1985).

    Google Scholar 

  11. W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, Princeton (1948).

    MATH  Google Scholar 

  12. A. P. Calderon, “On the differentiability of absolutely continuous functions,” Riv. Mat. Univ. Parma, 2, 203–213 (1951).

    MATH  MathSciNet  Google Scholar 

  13. S. Saks, Theory of the Integral, Państwowe Wydawnictwo Naukowe, Warsaw (1937).

    Google Scholar 

  14. A. G. Fadell, “A note on a theorem of Gehring and Lehto,” Proc. Amer. Math. Soc., 49, 195–198 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  15. F.W. Gehring and O. Lehto, “On the total differentiability of functions of a complex variable,” Ann. Acad. Sci. Fenn. Ser. A1. Math., 272, 3–8 (1959).

    MathSciNet  Google Scholar 

  16. D. Menchoff, “Sur les differencelles totales des fonctions univalentes,” Math. Ann., 105, 75–85 (1931).

    Article  MathSciNet  Google Scholar 

  17. J. Väisälä, “Two new characterizations for quasiconformality,” Ann. Acad. Sci. Fenn. Ser. A1. Math., 362, 1–12 (1965).

    Google Scholar 

  18. P. S. Aleksandrov, A. I. Markushevich, and A.Ya. Khinchin, Encyclopedia of Elementary Mathematics. Book Four. Geometry [in Russian], Fizmatgiz, Moscow (1963).

  19. S. K. Vodop’yanov, “Mappings with finite distortion and the classes of Sobolev functions,” Dokl. Akad. Nauk, 440, No. 3, 301–305 (2008).

    Google Scholar 

  20. P. Koskela and J. Maly, “Mappings of finite distortion: The zero set of Jacobian,” J. Eur. Math. Soc., 5, No. 2, 95–105 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  21. S. P. Ponomarev, “N -1-property of functions and the Luzin (N) condition,” Mat. Zametki, 58, Issue 3, 411–418 (1995).

    MathSciNet  Google Scholar 

  22. V. A. Zorich, Mathematical Analysis [in Russian], Vol. 1, Nauka, Moscow (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 65, No. 9, pp. 1254–1265, September, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryazanov, V.I., Salimov, R.R. & Sevost’yanov, E.A. On the Orlicz–Sobolev Classes and Mappings with Bounded Dirichlet Integral. Ukr Math J 65, 1394–1405 (2014). https://doi.org/10.1007/s11253-014-0867-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-014-0867-1

Keywords

Navigation