Skip to main content
Log in

On the Best Approximation in the Mean by Algebraic Polynomials with Weight and the Exact Values of Widths for the Classes of Functions

  • Published:
Ukrainian Mathematical Journal Aims and scope

The exact value of the extremal characteristic

is obtained on the class L r2 (D ρ ), where r ∈+; \( {D}_{\rho} = \sigma (x)\frac{d^2}{d{ x}^2}+\tau (x)\frac{d}{d x} \) , σ and τ are polynomials of at most the second and first degrees, respectively, ρ is a weight function, 0 < p ≤ 2, 0 < h < 1, λ n (ρ) are eigenvalues of the operator D ρ , φ is a nonnegative measurable and summable function (in the interval (a, b)) which is not equivalent to zero, Ω k,ρ is the generalized modulus of continuity of the k th order in the space L 2,ρ (a, b), and E n (f)2,ρ is the best polynomial approximation in the mean with weight ρ for a function f ∈ L 2,ρ (a, b). The exact values of widths for the classes of functions specified by the characteristic of smoothness Ω k,ρ and the K-functional \( \mathbb{K} \) m are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Nikiforov and V. B. Uvarov, Special Functions in Mathematical Physics [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  2. V. A. Abilov, F. V. Abilova, and M. K. Kerimov, “Sharp estimates for the rate of convergence of Fourier series in orthogonal polynomials in the space L 2((a, b),p(x)) ,” Zh. Vychisl. Mat. Mat. Fiz., 49, No. 6, 966–980 (2009).

    MATH  MathSciNet  Google Scholar 

  3. Y. L. Luke, Mathematical Functions and Their Approximations, Academic Press, New York (1975).

    MATH  Google Scholar 

  4. D. Jackson, Fourier Series and Orthogonal Polynomials, Carus Mathematical Monograph, No. 6, Mathematical Association of America (1941).

  5. I. P. Natanson, Constructive Theory of Functions [in Russian], Gostekhizdat, Moscow (1949).

    Google Scholar 

  6. P. K. Suetin, Classical Orthogonal Polynomials [in Russian], Fizmatlit, Moscow (2007).

    Google Scholar 

  7. M. K. Potapov, “On the approximation of nonperiodic functions by algebraic polynomials,” Vestn. Mosk. Univ., Ser. Mat. Mekh., 4, 14–25 (1960).

    MathSciNet  Google Scholar 

  8. V. M. Yakhnin, “On the remainders of the expansion of functions whose r th derivative satisfies the Lipschitz condition in the Fourier series in Jacobi polynomials,” Ukr. Mat. Zh., 12, No. 2, 194–204 (1960).

    Google Scholar 

  9. G. V. Zhidkov, “Constructive characteristic of one class of nonperiodic functions,” Dokl. Akad. Nauk SSSR, 169, No. 5, 1002–1005 (1969).

    Google Scholar 

  10. S. Z. Rafal’son, “On the approximation of functions in the mean by Fourier–Jacobi sums,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 4, 54–62 (1968).

  11. S. Z. Rafal’son, “On the approximation of functions in the mean by Fourier–Hermite sums,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 7, 78–84 (1968).

  12. G. Froid, “On the approximation with weight by algebraic polynomials on the real axis,” Dokl. Akad. Nauk, 191, No. 2, 293–294 (1970).

    MathSciNet  Google Scholar 

  13. A. S. Dzhafarov, “Averaged moduli of continuity and some their connections with the best approximations,” Dokl. Akad. Nauk SSSR, 236, No. 2, 288–291 (1977).

    MathSciNet  Google Scholar 

  14. B. A. Khalilova, “On the Fourier–Jacobi coefficients and approximation of functions by ultraspherical polynomials,” Izv. Akad. Nauk Azerb. SSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 2, 87–94 (1973).

  15. V. P. Motornyi, “On the convergence in the mean of Fourier series in Legendre polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat., 37, No. 1, 135–147 (1973).

    MATH  MathSciNet  Google Scholar 

  16. V. M. Badkov, “Approximate properties of Fourier series in orthogonal polynomials,” Usp. Mat. Nauk, 33, No. 4, 51–106 (1978).

    MATH  MathSciNet  Google Scholar 

  17. V. M. Fedorov, “Approximation by algebraic Fourier–Hermite polynomials with weight,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 6, 55–63 (1984).

  18. D. V. Alekseev, “Approximation by Chebyshev–Hermite polynomials with weight on the real axis,” Vestn. Mosk. Univ., Ser. Mat. Mekh., No. 6, 68–71 (1997).

  19. V. A. Abilov, “Approximation of functions by Fourier–Laguerre sums,” Mat. Zametki, 57, No. 2, 163–170 (1995).

    MathSciNet  Google Scholar 

  20. V. A. Abilov and F. V. Abilova, “Approximation of functions by algebraic polynomials in the mean,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 3, 61–63 (1997).

  21. M. V. Abilov and G. A. Aigunov, “Some problems of the approximation of functions of many variables by Fourier sums in the space L 2((a, b)n; p(x)) ,Usp. Mat. Nauk, 59, No. 6, 201–202 (2004).

    Article  MathSciNet  Google Scholar 

  22. A. G. Babenko, “Exact Jackson–Stechkin inequality for L 2 -approximations on a half line with Laguerre weight,” in: Proc. of the Internat. Stechkin School on the Theory of Functions (Russia, Miass, Chelyabinsk Region, July 24–August 3, 1998) [in Russian], Institute of Mathematics and Mechanics, Ural Division of the Russian Academy of Sciences, Ekaterinburg (1999), pp. 38–63.

  23. S. B. Vakarchuk, “On the Jackson-type inequalities in L 2[1, 1] and exact values of n-widths for functional classes,” Ukr. Mat. Visn., 3, No. 41, 102–119 (2006).

    MathSciNet  Google Scholar 

  24. N. P. Korneichuk, “Exact constant in the D. Jackson theorem on the best uniform approximation of continuous periodic functions,” Dokl. Akad. Nauk SSSR, 145, No. 3, 514–515 (1962).

    MathSciNet  Google Scholar 

  25. N. I. Chernykh, “On the Jackson inequality in L 2 ,Tr. Mat. Inst. Akad. Nauk SSSR, 88, 71–74 (1967).

    Google Scholar 

  26. L. V. Taikov, “Inequalities containing best approximations and modulus of continuity in L 2 ,Mat. Zametki, 20, No. 3, 433–438 (1976).

    MATH  MathSciNet  Google Scholar 

  27. A. A. Ligun, “Exact inequalities between the best approximations and the moduli of continuity in the space L 2 ,Mat. Zametki, 24, No. 6, 785–792 (1978).

    MATH  MathSciNet  Google Scholar 

  28. A. G. Babenko, “On the exact constant in the Jackson inequality in L 2 ,Mat. Zametki, 39, No. 5, 651–664 (1986).

    MathSciNet  Google Scholar 

  29. A. I. Stepanets and A. S. Serdyuk, “Direct and inverse theorems in the theory of approximation of functions in the space S p ,Ukr. Mat. Zh., 54, No. 1, 106–124 (2002); English translation: Ukr. Math. J., 54, No. 1, 126–148 (2002).

    Article  MathSciNet  Google Scholar 

  30. A. S. Serdyuk, “Widths in the space S p of the classes of functions defined by the moduli of continuity of their derivatives” in: Extreme Problems of the Theory of Functions and Related Problems [in Ukrainian], Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv, 46 (2003), pp. 229–248.

  31. S. B. Vakarchuk, “Jackson-type inequalities and widths for the classes of functions in L 2 ,Mat. Zametki, 80, No. 1, 11–19 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  32. S. B. Vakarchuk and V. I. Zabutnaya, “Exact Jackson–Stechkin-type inequalities in L 2 and the widths of functional classes” Mat. Zametki, 86, No. 3, 328–336 (2009).

    Article  MathSciNet  Google Scholar 

  33. V. I. Ivanov and O. I. Smirnov, Jackson and Young Constants in the Space L p [in Russian], Tula University, Tula (1995).

    Google Scholar 

  34. I. K. Daugavet, Introduction to the Approximation Theory of Functions [in Russian], Leningrad University, Leningrad (1977).

    Google Scholar 

  35. M. K. Potapov, “On the use of one operator of generalized shift in the approximation theory,” Vestn. Mosk. Univ., Ser. Mat. Mekh., No. 3, 38–48 (1998).

  36. G. Szegö, Orthogonal Polynomials [Russian translation], Fizmatgiz, Moscow (1962).

    Google Scholar 

  37. A. Pinkus, n-Widths in Approximation Theory, Springer, New York (1985).

    Book  MATH  Google Scholar 

  38. J. Bergh and J. Löfström, Interpolation Spaces. An Introduction [Russian translation], Mir, Moscow (1980).

    Google Scholar 

  39. S. B. Vakarchuk, “K-functionals and exact values of n-widths for some classes from L 2 ,Mat. Zametki, 66, No. 4, 494–499 (1999).

    Article  MathSciNet  Google Scholar 

  40. S. B. Vakarchuk, “On the K-functionals and exact values of n-widths for some classes from the spaces C(2π) and L 1(2π),Mat. Zametki, 71, No. 4, 522–531 (2002).

    Article  MathSciNet  Google Scholar 

  41. V. M. Tikhomirov, Some Problems of Approximation Theory [in Russian], Moscow University, Moscow (1976).

    Google Scholar 

  42. V. A. Abilov, “On the coefficients of Fourier–Hermite series for continuous functions,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 12, 3–8 (1969).

  43. I. A. Shevchuk, Approximation by Polynomials and the Traces of Functions Continuous on a Segment [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 65, No. 12, pp. 1604–1621, December, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakarchuk, S.B., Shvachko, A.V. On the Best Approximation in the Mean by Algebraic Polynomials with Weight and the Exact Values of Widths for the Classes of Functions. Ukr Math J 65, 1774–1792 (2014). https://doi.org/10.1007/s11253-014-0897-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-014-0897-8

Keywords

Navigation