Skip to main content
Log in

On the summability of double Walsh–fourier series of functions of bounded generalized variation

  • Published:
Ukrainian Mathematical Journal Aims and scope

The problem of convergence of the Cesàro means of negative order for double Walsh–Fourier series of functions of bounded generalized variation is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Bakhvalov, “Continuity in .-variation of functions of several variables and the convergence of multiple Fourier series,” Mat. Sb., 193, No. 12, 3–20 (2002); English translation: Sb. Math., 193, No. 11-12, 1731–1748 (2002).

    Article  MathSciNet  Google Scholar 

  2. Z. A. Chanturia, “The modulus of variation of a function and its application in the theory of Fourier series,” Sov. Math. Dokl., 15, 67–71 (1974).

    Google Scholar 

  3. J. E. Daly and S. Fridli, “Walsh multipliers for dyadic Hardy spaces,” Appl. Anal., 82, No. 7, 689–700 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  4. M. I. Dyachenko, “Waterman classes and spherical partial sums of double Fourier series,” Anal. Math., 21, 3–21 (1995).

    Article  MathSciNet  Google Scholar 

  5. M. I. Dyachenko, “Two-dimensional Waterman classes and u-convergence of Fourier series,” Mat. Sb., 190, No. 7, 23–40 (1999); English translation: Sb. Math., 190, No. 7-8, 955–972 (1999).

    Article  MathSciNet  Google Scholar 

  6. M. I. Dyachenko and D. Waterman, “Convergence of double Fourier series and W-classes,” Trans. Amer. Math. Soc., 357, 397–407 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  7. U. Goginava, “On the uniform convergence of multiple trigonometric Fourier series,” East J. Approxim., 3, No. 5, 253–266 (1999).

    MathSciNet  Google Scholar 

  8. U. Goginava, “On the uniform convergence of Walsh–Fourier series,” Acta Math. Hung., 93, No. 1-2, 59–70 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  9. U. Goginava, “On the approximation properties of Cesàro means of negative order of Walsh–Fourier series,” J. Approxim. Theory, 115, No. 1, 9–20 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  10. U. Goginava, “Uniform convergence of Cesàro means of negative order of double Walsh–Fourier series,” J. Approxim. Theory, 124, No. 1, 96–108 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  11. U. Goginava and A. Sahakian, “On the convergence of double Fourier series of functions of bounded partial generalized variation,” East J. Approxim., 16, No. 2, 153–165 (2010).

    MathSciNet  Google Scholar 

  12. B. I. Golubov, A. V. Efimov, and V. A. Skvortsov, Series and Transformations of Walsh [in Russian], Moscow (1987); English translation: Kluwer, Dordrecht (1991).

  13. G. H. Hardy, “On double Fourier series and especially which represent the double zeta function with real and incommensurable parameters,” Quart. J. Math., 37, 53–79 (1906).

    Google Scholar 

  14. C. Jordan, “Sur la series de Fourier,” C.R. Acad. Sci. Paris, 92, 228–230 (1881).

    MATH  Google Scholar 

  15. J. Marcinkiewicz, “On a class of functions and their Fourier series,” Compt. Rend. Soc. Sci. Warsowie, 26, 71–77 (1934).

    MATH  Google Scholar 

  16. F. Móricz, “Rate of convergence for double Walsh–Fourier series of functions of bounded fluctuation,” Arch. Math. (Basel), 60, No. 3, 256–265 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Móricz, “On the uniform convergence and L1-convergence of double Walsh–Fourier series,” Stud. Math., 102, No. 3, 225–237 (1992).

    MATH  Google Scholar 

  18. C.W. Onneweer and D.Waterman, “Fourier series of functions of harmonic bounded fluctuation on groups,” J. Anal. Math., 27, 79–83 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. I. Sablin, “Λ-variation and Fourier series,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., 10, 66–68 (1987); English translation: Soviet Math. (Izv. VUZ), 31 (1987).

    MathSciNet  Google Scholar 

  20. A. A. Sahakian, “On the convergence of double Fourier series of functions of bounded harmonic variation,” Izv. Akad. Nauk Armyan. SSR, Ser. Mat., 21. No. 6, 517–529 (1986); English translation: Soviet J. Contemp. Math. Anal., 21, No. 6, 1–13 (1986).

    MathSciNet  Google Scholar 

  21. F. Schipp, W. R. Wade, J. Simon, and P. Pál, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol–New York (1990).

    MATH  Google Scholar 

  22. V. Tevzadze, “Uniform .(C,α) (-1< α < 0) summability of Fourier series with respect to theWalsh–Paley system,” Acta Math. Acad. Paedagog. Nyházi. (N.S.), 22, No. 1, 41–61 (2006).

    MathSciNet  MATH  Google Scholar 

  23. D. Waterman, “On convergence of Fourier series of functions of generalized bounded variation,” Stud. Math., 44, 107–117 (1972).

    MathSciNet  MATH  Google Scholar 

  24. D. Waterman, “On the summability of Fourier series of functions of .-bounded variation,” Stud. Math., 55, 87–95 (1976).

    MATH  Google Scholar 

  25. N. Wiener, “The quadratic variation of a function and its Fourier coefficients,” Mass. J. Math., 3, 72–94 (1924).

    MATH  Google Scholar 

  26. L. V. Zhizhiashvili, Trigonometric Fourier Series and Their Conjugates, Kluwer, Dordrecht (1996).

    Book  MATH  Google Scholar 

  27. A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge (1959).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 64, No. 4, pp. 490–507, April, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goginava, U. On the summability of double Walsh–fourier series of functions of bounded generalized variation. Ukr Math J 64, 555–574 (2012). https://doi.org/10.1007/s11253-012-0664-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-012-0664-7

Keywords

Navigation