Skip to main content
Log in

Boundary controllability problems for the equation of oscillation of an inhomogeneous string on a semiaxis

  • Published:
Ukrainian Mathematical Journal Aims and scope

We consider a wave equation on a semiaxis, namely, w t t (x,t) = w xx (x,t) - q(x)w(x,t), x>0. The equation is controlled by one of the following two boundary conditions w(0,t)=u 0(t) and w x (0,t)=u 1(t), t ∈ (0,T) where u 0 and u 1 are controls. In both cases, the potential q satisfies the condition qC[0,∞) the controls belong to the class L ; and the time T > 0 is fixed. These control systems are considered in Sobolev spaces. Using the operators adjoint to the transformation operators for the Sturm–Liouville problem, we obtain necessary and sufficient conditions for the null-controllability and approximate null-controllability of these systems. The controls that solve these problems are found in explicit form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Krabs and G. Leugering, “On boundary controllability of one-dimensional vibrating systems by \( W_0^{1,p} \) -controls for p ∈ [0,∞)” Math. Meth. Appl. Sci., 17, No. 2, 77–93 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Gugat, “Analytic solutions of L -optimal control problems for the wave equation,” J. Optim. Theor. Appl., 114, No. 2, 397–421 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Gugat and G. Leugering, “Solutions of L p-norm-minimal control problems for the wave equation,” Comput. Appl. Math., 21, No. 1, 227–244 (2002).

    MathSciNet  MATH  Google Scholar 

  4. M. Negreanu and E. Zuazua, “Convergence of multigrid method for the controllability of a 1-d wave equation,” C. R. Math. Acad. Sci. Paris, 338, No. 5, 413–418 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Gugat, G. Leugering, and G. Sklyar, “L p-optimal boundary control for the wave equation,” SIAM J. Control Optim., 44, No. 1, 49–74 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Gugat, “Optimal boundary control of a string to rest in a finite time with continuous state,” ZAMM, 86, No. 2, 134–150 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  7. L. V. Fardigola and K. S. Khalina, “Controllability problems for the string equation,” Ukr. Mat. Zh., 59, No. 7, 939–952 (2007); English translation: Ukr. Math. J., 59, No. 7, 1040–1058 (2007).

  8. M. Gugat and G. Leugering, “L -norm minimal control of the wave equation: on the weakness of the bang-bang principle,” ESAIM: Control Optim. Calc. Var., 14, No. 2, 254–283 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  9. O. Yu. Émanuilov, “Boundary controllability by hyperbolic equations,” Sib. Mat. Zh., 41, No. 4, 944–959 (2000).

    Article  MATH  Google Scholar 

  10. D. L. Russell, “Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions,” SIAM Rev., 20, No. 4, 639–739 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Vancostenoble and E. Zuazua, “Hardy inequalities, observability, and control for the wave and Schr¨odinger equations with singular potentials,” SIAM J. Math. Anal., 41, No. 4, 1508–1532 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. A. Il’in and E. I. Moiseev, “On the boundary control at one endpoint described by the telegraph equation,” Dokl. Akad. Nauk, 387, No. 5, 600–603 (2002).

    MathSciNet  Google Scholar 

  13. K. S. Khalina, “Controllability problems for the non-homogeneous string that is fixed at the right endpoint and has the Dirichlet boundary control at the left endpoint,” J. Math. Phys. Anal. Geom., 7, No. 1, 34–58 (2011).

    MathSciNet  MATH  Google Scholar 

  14. K. S. Khalina, “On the Neumann boundary controllability for the non-homogeneous string on a segment,” J. Math. Phys. Anal. Geom., 7, No. 4, 333–351 (2011).

    MathSciNet  MATH  Google Scholar 

  15. G. M. Sklyar and L. V. Fardigola, “The Markov power moment problem in problems of controllability and frequency extinguishing for the wave equation on a half-axis,” J. Math. Anal. Appl., 276, No. 1, 109–134 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  16. G. M. Sklyar and L. V. Fardigola, “The Markov trigonometric moment problem in controllability problems for the wave equation on a half-axis,” Mat. Fiz., Analiz, Geom., 9, No. 2, 233–242 (2002).

    MathSciNet  MATH  Google Scholar 

  17. L. V. Fardigola, “Problem of controllability by Neumann boundary conditions for the string equation on a semiaxis,” Dopov. Nats. Akad. Nauk Ukr., Issue 10, 36–41 (2009).

    Google Scholar 

  18. L. V. Fardigola, “Controllability problems for the string equation on a half-axis with a boundary control bounded by a hard constant,” SIAM J. Control Optim., 47, 2179–2199 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  19. L. V. Fardigola, “Controllability problems for the 1-D wave equation on a half-axis with the Dirichlet boundary control,” ESAIM: Control Optim. Calc. Var., E–first, DOI:10.1051/cocv/2011169.

  20. L. Schwartz, Théorie des Distributions, I, II, Hermann, Paris (1950–1951).

  21. L. R. Volevich and S. G. Gindikin, Generalized Functions in Convolution Equations [in Russian], Fizmatlit, Moscow (1994).

    Google Scholar 

  22. V. A. Marchenko, Sturm–Liouville Operators and Their Applications [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  23. V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  24. I. M. Gel’fand and G. E. Shilov, Some Problems in the Theory of Differential Equations. Vol. 3. Generalized Functions [in Russian], Fizmatgiz, Moscow (1958).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 64, No. 4, pp. 525–541, April, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalina, K.S. Boundary controllability problems for the equation of oscillation of an inhomogeneous string on a semiaxis. Ukr Math J 64, 594–615 (2012). https://doi.org/10.1007/s11253-012-0666-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-012-0666-5

Keywords

Navigation