Skip to main content
Log in

On the dependence of the norm of a function on the norms of its derivatives of orders k, r − 2, and r, 0 < k < r − 2

  • Published:
Ukrainian Mathematical Journal Aims and scope

We establish conditions for a system of positive numbers M k1, M k2, M k3, M k4, 0 = k 1 < k 2 < k 3 = r − 2, k 4 = r, necessary and sufficient for the existence of a function \( x\in {L^r}_{{\infty, \infty }}\left( \mathbb{R} \right) \) such that \( {{\left\| {{x^{{\left( {{k_i}} \right)}}}} \right\|}_{\infty }}={M_{{{k_i}}}},i=1,2,3,4 \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Kolmogorov, “Une généralisation de l’inégalité de M. J. Hadamard entre les bornes supérieures des dérivées successives d’une fonction,” C. R. Acad. Sci. Paris, 207, 764–765 (1938).

    MATH  Google Scholar 

  2. A. N. Kolmogorov, “On inequalities for upper bounds of consecutive derivatives of an arbitrary function on an infinite interval,” Uch. Zap. Mosk. Gos. Univ., 30, 3–16 (1939).

    Google Scholar 

  3. A. N. Kolmogorov, “On inequalities for upper bounds of consecutive derivatives of an arbitrary function on an infinite interval,” in: A. N. Kolmogorov, Selected Works. Mathematics and Mechanics [in Russian], Nauka, Moscow (1985), pp. 252–263.

  4. A. M. Rodov, “Sufficient conditions for the existence of a function of a real variable with given upper bounds of moduli of the function itself and its five consecutive derivatives,” Uch. Zap. Belorus. Gos. Univ., Ser. Fiz.-Mat., 19, 65–72 (1954).

    MathSciNet  Google Scholar 

  5. V. K. Dzyadyk and V. A. Dubovik, “A contribution to Kolmogorov problem of relationships among upper bounds of derivatives of real functions given on entire axis,” Ukr. Mat. Zh., 26, No. 3, 300–317 (1974); English translation: Ukr. Math. J., 26, No. 3, 246–259 (1974).

    Google Scholar 

  6. A. M. Rodov, “Dependence between upper bounds of derivatives of functions of a real variable,” Izv. Akad. Nauk SSSR, Ser. Mat., 10, 257–270 (1946).

    MathSciNet  MATH  Google Scholar 

  7. J. Hadamard, “Sur le maximum d’une fonction et de ses d´eriv´ees,” C. R. Soc. Math. France, 41, 68–72 (1914).

    Google Scholar 

  8. G. E. Shilov, “On inequalities for derivatives,” Sb. Rabot Stud. Nauch. Kruzhk. Mosk. Gos. Univ., 1, 17–27 (1937).

    Google Scholar 

  9. V. F. Babenko, N. P. Korneichuk, V. A. Kofanov, and S. A. Pichugov, Inequalities for Derivatives and Their Applications [in Russian], Naukova Dumka, Kiev (2003).

    Google Scholar 

  10. V. K. Dzyadyk and V. A. Dubovik, “On A. N. Kolmogorov’s inequalities relating the upper bounds of derivatives of real functions defined on the whole axis,” Ukr. Mat. Zh., 27, No. 3, 291–299 (1975); English translation: Ukr. Math. J., 27, No. 3, 233–240 (1975).

    Google Scholar 

  11. N. P. Korneichuk, Extremal Problems in Approximation Theory [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  12. N. P. Korneichuk, Exact Constants in Approximation Theory [in Russian], Nauka, Moscow (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 64, No. 5, pp. 597–603, May, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babenko, V.F., Kovalenko, O.V. On the dependence of the norm of a function on the norms of its derivatives of orders k, r − 2, and r, 0 < k < r − 2. Ukr Math J 64, 672–679 (2012). https://doi.org/10.1007/s11253-012-0670-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-012-0670-9

Keywords

Navigation