Skip to main content
Log in

Asymptotic m-phase soliton-type solutions of a singularly perturbed Korteweg–de Vries equation with variable coefficients

  • Published:
Ukrainian Mathematical Journal Aims and scope

We propose an algorithm for the construction of asymptotic m-phase soliton-type solutions of a singularly perturbed Korteweg–de Vries equation with variable coefficients and establish the accuracy with which the main term asymptotically satisfies the considered equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Scott, Active and Nonlinear Wave Propagation in Electronics, Wiley, New York (1970).

    Google Scholar 

  2. J. Scott-Russel, “Report on waves,” in: Reports of the Fourteenth Meeting of the British Association for the Advancement of Science, John Murray, London (1845), pp. 311–390.

    Google Scholar 

  3. D. J. Korteweg and G. de Vries, “On the change in form of long waves advancing in a rectangular canal and a new type of long stationary waves,” Philos. Mag., No. 39, 422–433 (1895).

    Google Scholar 

  4. F. D. Tappert, “Improved Korteweg–de Vries equation for ion acoustic waves,” Phys. Fluids, 15, 2446–2447 (1975).

    Article  Google Scholar 

  5. H. Kever and G. K. Morikawa, “Korteweg–de Vries equation for nonlinear hydromagnetic waves in a warm collision free plasma,” Phys. Fluids, 12, 2090–2093 (1969).

    Article  Google Scholar 

  6. N. J. Zabusky, “Solitons and energy transport in nonlinear lattices,” Comput. Phys. Comm., 5, 1–10 (1973).

    Article  Google Scholar 

  7. S. Leibovich, “Weakly nonlinear waves in rotating fluids,” J. Fluid. Mech., 42, 803–822 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  8. G. M. Zaslavskii and R. Z. Sagdeev, Introduction to Nonlinear Physics. From Pendulum to Turbulence and Chaos [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  9. C. S. Su and C. S. Gardner, “The Korteweg–de Vries equation and generalizations. III. Derivation of the Korteweg–de Vries equation and Burger’s equation,” J. Math. Phys., 10, 536–539 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  10. N. J. Zabusky and M. D. Kruskal, “Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states,” Phys. Rev. Lett., 15, 240–243 (1965).

    Article  MATH  Google Scholar 

  11. C. S. Gardner, J. M. Green, M. D. Kruskal, and R. M. Miura, “Method for solving the Korteweg–de Vries equation,” Phys. Rev. Lett., 19, 1095–1097 (1967).

    Article  MATH  Google Scholar 

  12. P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves,” Comm. Pure Appl. Math., 21, No. 15, 467–490 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. E. Zakharov and L. D. Faddeev, “The Korteweg–de Vries equation is a completely integrable Hamiltonian system,” Funkts. Anal. Prilozhen., 5, No. 4, 18–27 (1971).

    Google Scholar 

  14. P. D. Lax, “Periodic solutions of the Korteweg–de Vries equation,” Lect. Appl. Math., 15, 467–490 (1974).

    MathSciNet  Google Scholar 

  15. V. A. Marchenko, “Periodic Korteweg–de Vries problem,” Mat. Sb., 95, No. 3, 331–356 (1974).

    MathSciNet  Google Scholar 

  16. S. P. Novikov, “Periodic problem for the Korteweg–de Vries equation,” Funkts. Anal. Prilozhen., 8, No. 3, 54–66 (1974).

    Google Scholar 

  17. V. E. Zakharov and S. V. Manakov, “Generalization of the inverse scattering transform,” Teor. Mat. Fiz., 27, No. 3, 283–287 (1976).

    Article  MATH  Google Scholar 

  18. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons. Inverse Scattering Transform [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  19. G. L. Lam, Jr., Elements of Soliton Theory, Wiley, New York (1980).

    Google Scholar 

  20. R. K. Bullough and P. J. Caudrey (editors), Solitons, Springer, Berlin (1980).

    MATH  Google Scholar 

  21. L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Approach to the Theory of Solitons [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  22. M. J. Ablowitz and H. Segur, Solitons and Inverse Scattering Transform, Society of Industrial and Applied Mathematics, Philadelphia (1981).

    Book  MATH  Google Scholar 

  23. Yu. A. Mitropol’skii, N. N. Bogolyubov, Jr., A. K. Prikarpatskii, and V. G. Samoilenko, Integrable Dynamical Systems. Spectral and Algebraic-Geometric Aspects [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  24. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, London (1984).

    Google Scholar 

  25. A. C. Newell, Solitons in Mathematics and Physics, Society for Industrial and Applied Mathematics (1985).

    Book  Google Scholar 

  26. L. P. Nizhnik, Inverse Scattering Problems for Hyperbolic Equations [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  27. J. M. Dye and A. Parker, “An inverse scattering scheme for the regularized long-wave equation,” J. Math. Phys., 41, No. 5, 2889–2904 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Miwa, M. Jimbo, and E. Date, Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras, Cambridge University, Cambridge (2000).

    MATH  Google Scholar 

  29. D. Blackmore, A. K. Prykarpatsky, and V. H. Samoylenko, Nonlinear Dynamical Systems of Mathematical Physics. Spectral and Symplectic Integrability Analysis, World Scientific, Singapore (2011).

    Book  MATH  Google Scholar 

  30. V. P. Maslov and G. A. Omel’yanov, “Asymptotic soliton-like solutions of equations with small dispersion,” Usp. Mat. Nauk, Issue 36 (219), No. 2, 63–124 (1981).

  31. V. P. Maslov and G. A. Omel’yanov, Geometric Asymptotics for PDE. I, American Mathematical Society, Providence (2001).

    MATH  Google Scholar 

  32. Yu. I. Samoilenko, “Asymptotic expansions for one-phase soliton-type solution to perturbed Korteweg–de Vries equation,” in: Proceedings of the Fifth International Conference “Symmetry in Nonlinear Mathematical Physics,” Vol. 3, Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2004), pp. 1435–1441.

    Google Scholar 

  33. V. H. Samoilenko and Yu. I. Samoilenko, “Asymptotic expansions for one-phase soliton-type solutions of the Korteweg–de Vries equation with variable coefficients,” Ukr. Mat. Zh., 57, No. 1, 111–124 (2005); English translation: Ukr. Math. J., 57, No. 1, 132–148 (2005).

    Article  Google Scholar 

  34. V. H. Samoilenko and Yu. I. Samoilenko, “Asymptotic solutions of the Cauchy problem for the singularly perturbed Korteweg–de Vries equation with variable coefficients,” Ukr. Mat. Zh., 59, No. 1, 122–132 (2007); English translation: Ukr. Math. J., 59, No. 1, 126–139 (2007).

    Article  Google Scholar 

  35. Yu. I. Samoilenko, “Asymptotic expansions for one-phase soliton-like solutions of the Cauchy problem for the Korteweg–de Vries equation with variable coefficients and small dispersion,” Nauk. Visn. Cherniv. Univ., Ser. Mat., Issue 336–337, 170–177 (2007).

  36. V. H. Samoilenko and Yu. I. Samoilenko, “Asymptotic two-phase soliton-like solutions of the singularly perturbed Korteweg–de Vries equation with variable coefficients,” Ukr. Mat. Zh., 60, No. 3, 378–387 (2008); English translation: Ukr. Math. J., 60, No. 3, 449–461 (2008).

    Article  Google Scholar 

  37. Yu. I. Samoilenko, “Asymptotic solutions of the singularly perturbed Korteweg–de Vries equation with variable coefficients (general case),” Mat. Visn. NTSh, 7, 227–242 (2010).

    Google Scholar 

  38. R. M. Miura, “The Korteweg–de Vries equation: a survey of results,” SIAM Rev., 18, No. 3, 412–459 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  39. F. de Kerf, Asymptotic Analysis of a Class of Perturbed Korteweg–de Vries Initial Value Problems, CWI, Amsterdam (1988).

    MATH  Google Scholar 

  40. V. S. Vladimirov, Generalized Functions in Mathematical Physics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 64, No. 7, pp. 970–987, July, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samoilenko, V.H., Samoilenko, Y.I. Asymptotic m-phase soliton-type solutions of a singularly perturbed Korteweg–de Vries equation with variable coefficients. Ukr Math J 64, 1109–1127 (2012). https://doi.org/10.1007/s11253-012-0702-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-012-0702-5

Keywords

Navigation