Skip to main content
Log in

On convolutions on configuration spaces. II. spaces of locally finite configurations

  • Published:
Ukrainian Mathematical Journal Aims and scope

We consider the convolution of probability measures on spaces of locally finite configurations (subsets of a phase space) and their connection with the convolution of the corresponding correlation measures and functionals. In particular, the convolution of Gibbs measures is studied. We also describe a relationship between invariant measures with respect to some operator and properties of the corresponding image of this operator on correlation functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.V. Skorokhod, “On differentiability of measures corresponding to random processes. I. Processes with independent increments,” Teor. Ver. Primen., 2, 417–443 (1957).

    Google Scholar 

  2. D. L. Finkel’shtein, “On convolutions on configuration spaces. I. Spaces of finite configurations,” Ukr. Mat. Zh., 64, No. 11, 1547–1567 (2012); English translation: Ukr. Math. J., 64, No. 11, 1752–1775 (2013).

  3. S. Albeverio, Y. Kondratiev, and M. Röckner, “Analysis and geometry on configuration spaces,” J. Funct. Anal., 154, No. 2, 444–500 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  4. N. R. Campbell, “The study of discontinuous phenomena,” Proc. Cambridge Philos. Soc., 15, 117–136 (1909).

    Google Scholar 

  5. N. R. Campbell, “Discontinuities in light emission,” Proc. Cambridge Philos. Soc., 15, 310–328 (1910).

    MATH  Google Scholar 

  6. D. Finkelshtein, “Measures on two-component configuration spaces,” Cond. Matter Phys., 12, No. 1, 5–18 (2009).

    Article  Google Scholar 

  7. D. Finkelshtein and Y. Kondratiev, “Measures on configuration spaces defined by relative energies,” Meth. Funct. Anal. Top., 11, No. 2, 126–155 (2005).

    MathSciNet  Google Scholar 

  8. D. Finkelshtein, Y. Kondratiev, and O. Kutoviy, “Semigroup approach to non-equilibrium birth-and-death stochastic dynamics in continuum,” J. Funct. Anal., 262, No. 3, 1274–1308 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Finkelshtein and G. Us, “On exponential model of Poisson spaces,” Meth. Funct. Anal. Top., 4, No. 4, 5–21 (1998).

    MathSciNet  MATH  Google Scholar 

  10. G. B. Folland, Real Analysis, Wiley, New York (1999).

    MATH  Google Scholar 

  11. Y. Kondratiev and T. Kuna, “Harmonic analysis on configuration space. I. General theory,” Infinite Dimen. Anal. Quantum Probab. Relat. Top., 5, No. 2, 201–233 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Kondratiev, O. Kutoviy, and S. Pirogov, “Correlation functions and invariant measures in continuous contact model,” Infinite Dimen. Anal. Quantum Probab. Relat. Top., 11, No. 2, 231–258 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Kondratiev and A. Skorokhod, “On contact processes in continuum,” Infinite Dimen. Anal. Quantum Probab. Relat. Top., 9, No. 2, 187–198 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Kuna, Studies in Configuration Space Analysis and Applications, Dissertation, Bonn (1999).

  15. T. Kuna, Y. Kondratiev, and J. L. da Silva, “Marked Gibbs measures via cluster expansion,” Meth. Funct. Anal. Top., 4, No. 4, 50–81 (1998).

    MATH  Google Scholar 

  16. A. Lenard, “Correlation functions and the uniqueness of the state in classical statistical mechanics,” Commun. Math. Phys., 30, 35–44 (1973).

    Article  MathSciNet  Google Scholar 

  17. A. Lenard, “States of classical statistical mechanical systems of infinitely many particles. I,” Arch. Ration. Mech. Anal., 59, No. 3, 219–239 (1975).

    MathSciNet  Google Scholar 

  18. A. Lenard, “States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures,” Arch. Ration. Mech. Anal., 59, No. 3, 241–256 (1975).

    MathSciNet  Google Scholar 

  19. K. Matthes, J. Kerstan, and J. Mecke, Infinitely Divisible Point Processes, Wiley, Chichester (1978).

    MATH  Google Scholar 

  20. J. Mecke, “Eine charakteristische Eigenschaft der doppelt stochastischen Poissonschen Prozesse,” Z. Wahr. Verw. Geb., 11, 74–81 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  21. X.-X. Nguyen and H. Zessin, “Integral and differential characterizations of the Gibbs process,” Math. Nachr., 88, 105–115 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  22. K. R. Parthasarathy, “Probability measures on metric spaces,” Probab. Math. Stat., No. 3 (1967).

  23. Y. Takahashi, “Absolute continuity of Poisson random fields,” Publ. Res. Inst. Math. Sci., 26, No. 4, 629–647 (1990).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 64, No. 12, pp. 1699–1719, December, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finkel’shtein, D.L. On convolutions on configuration spaces. II. spaces of locally finite configurations. Ukr Math J 64, 1919–1944 (2013). https://doi.org/10.1007/s11253-013-0760-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-013-0760-3

Keywords

Navigation