Skip to main content
Log in

Poincaré series of the multigraded algebras of SL 2-invariants

  • Published:
Ukrainian Mathematical Journal Aims and scope

We deduce formulas for finding the Poincaré multiseries \( \mathcal{P}\left( {{\mathcal{C}_d},{z_1},{z_2}, \ldots, {z_n},t} \right) \) and \( \mathcal{P}\left( {{\mathcal{I}_d},{z_1},{z_2}, \ldots, {z_n}} \right) \), where \( {\mathcal{C}_d} \) and \( {\mathcal{I}_d} \), d = (d 1, d 2, . . . , d n ), are multigraded algebras of joint covariants and joint invariants for n binary forms of degrees d 1, d 2, . . . , d n .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Hochster and J. Roberts, “Rings of invariants of reductive groups acting on regular rings are Cohen-Macalay,” Adv. Math., 13, 125–175 (1974).

    Article  MathSciNet  Google Scholar 

  2. J. J. Sylvester and F. Franklin, “Tables of the generating functions and groundforms for the binary quantics of the first ten orders,” Amer. J. Math., 2, 223–251 (1879).

    Article  MathSciNet  Google Scholar 

  3. J. J. Sylvester, “Tables of the generating functions and groundforms of the binary duodecimic, with some general remarks, and tables of the irreducible syzygies of certain quantics,” Amer. J. Math., 4, 41–62 (1881).

    Article  MathSciNet  Google Scholar 

  4. M. Brion, “Invariants de plusieurs formes binaires,” Bull. Soc. Math. France, 110, 429–445 (1982).

    MathSciNet  MATH  Google Scholar 

  5. V. Drensky and G. K. Genov, “Multiplicities of Schur functions with applications to invariant theory and PI-algebras,” J. C. R. Acad. Bulg. Sci., 57, No. 3, 5–10 (2004).

    MathSciNet  MATH  Google Scholar 

  6. L. Bedratyuk, “The Poincaré series of the algebras of simultaneous invariants and covariants of two binary forms,” Lin. Multilin. Algebra, 58, No. 6, 789–803 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Bedratyuk, “Weitzenböck derivations and the classical invariant theory, I: Poincaré series,” Serdica Math. J., 36, No. 2, 99–120 (2010).

    MathSciNet  MATH  Google Scholar 

  8. W. Fulton and J. Harris, Representation Theory: a First Course, Springer, New York (1991).

    MATH  Google Scholar 

  9. T. A. Springer, “On the invariant theory of SU(2),” Indag. Math., 42, 339–345 (1980).

    MathSciNet  MATH  Google Scholar 

  10. P. A. MacMahon, Combinatory Analysis, Vol. 2, Cambr. Univ., Cambridge (1915–1916); Reprinted: Chelsea, New York (1960).

  11. H. Dersken and G. Kemper, Computational Invariant Theory, Springer, New York (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 63, No. 6, pp. 755–763, June, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedratyuk, L.P. Poincaré series of the multigraded algebras of SL 2-invariants. Ukr Math J 63, 880–890 (2011). https://doi.org/10.1007/s11253-011-0550-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-011-0550-8

Keywords

Navigation