Skip to main content
Log in

Discrete model of the nonsymmetric theory of elasticity

  • Published:
Ukrainian Mathematical Journal Aims and scope

We consider a discrete network of a large number of infinitely thin homogeneous rods oriented along a given vector and connected by elastic springs at each point. The asymptotic behavior of small oscillations of this discrete system is studied in the case where the distances between the nearest rods tend to zero. For general nonperiodic arrays of rods, we deduce equations aimed at the description of the homogenized model of the system. It is shown that the homogenized equations correspond to the asymmetric dynamics of the elastic medium. Indeed, in this case, the stress tensor of the medium linearly depends not only on the strain tensor but also on the rotation tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Cosserat and F. Cosserat, Théorie des Corps Deformables, Hermann, Paris (1909).

    Google Scholar 

  2. G. Grioli, “Ellasticá asymmetrica,” Ann. Mat. Pura Appl., 4, 389–418 (1960).

    MathSciNet  Google Scholar 

  3. R. D. Mindlin and H. F. Tiersten, “Effects of couple-stresses in linear elasticity,” Arch. Rat. Mech. Anal., 11, 415–448 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  4. I. Y. Smolin, P. V. Makarov, D. V. Shmick, and I. V. Savlevich, “A micropolar model of plastic deformation of polycrystals at the mesolevel,” Comp. Mat. Sci., 19, 133–142 (2000).

    Article  Google Scholar 

  5. X. Zhang and P. Sharma, “Inclusions and inhomogeneities in strain gradient elasticity with couple stresses and related problems,” Int. J. Solids Struct., 42, 3833–3851 (2005).

    Article  MATH  Google Scholar 

  6. A. I. Leonov, “Algebraic theory of linear viscoelastic nematodynamics,” Math. Phys., Anal. Geom., 11, 87–116 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Berezhnyi and E. Khruslov, “Nonstandard dynamics of elastic composites,” Networks Heterogen. Media, 6, 89–109 (2011).

    Article  MathSciNet  Google Scholar 

  8. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics. Quantum Mechanics. Nonrelativistic Theory, Pergamon Press, London (1958).

    Google Scholar 

  9. G. Friesecke and F. Theil, “Validity and failure of the Cauchy–Born rule in 2D mass-spring lattice,” J. Nonlin. Sci., No. 12, 445–478 (2002).

    Google Scholar 

  10. V. Marchenko and E. Khruslov, Homogenization of Partial Differential Equations, Birkhäuser, Boston (2006).

    MATH  Google Scholar 

  11. M. A. Berezhnyy and L. V. Berlyand, “Continuum limit for three-dimensional mass-spring networks and discrete Korn’s inequality,” J. Mech. Phys. Solids, 54, 635–669 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  12. O. A. Oleinik, A. S. Shamaev, and G. A. Iosif’yan, Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam (1982).

    Google Scholar 

  13. S. Mizohata, The Theory of Partial Differential Equations, Cambridge Univ. Press, New York (1973).

    MATH  Google Scholar 

  14. A. M. Kosevich, Theory of Crystal Lattice (Physical Mechanics of Crystals) [in Russian], Vyshcha Shkola, Kharkov (1988).

    Google Scholar 

  15. M. A. Berezhnyi, “The asymptotic behavior of viscous incompressible fluid small oscillations with solid interacting particles,” J. Math. Phys., Anal., Geom., 3, 135–156 (2007).

    MathSciNet  MATH  Google Scholar 

  16. M. Berezhnyi, L. Berlyand, and E. Khruslov, “The homogenized model of small oscillations of complex fluids,” Networks Heterogen. Media, 3, 835–869 (2008).

    MathSciNet  Google Scholar 

  17. M. A. Berezhnyi, Averaged Models of Structurized Liquids [in Ukrainian], Candidate-Degree Thesis (Physics and Mathematics), Kharkiv (2009). URL: http://www.lib.ua-ru.net/diss/cont/354154.html.

  18. A. I. Markushevich, Theory of Analytic Functions [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  19. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin (1995).

    MATH  Google Scholar 

  20. V. A. Ditkin and A. P. Prudnikov, Integral Transforms and Operational Calculus, Pergamon Press, New York (1965).

    MATH  Google Scholar 

  21. L. Berlyand and E. Khruslov, “Homogenized non-Newtonian viscoelastic rheology of a suspension of interacting particles in a viscous Newtonian fluid,” SIAM J. Appl. Math., 64, 1002–1034 (2004).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 63, No. 6, pp. 764–785, June, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berezhnoi, M.A. Discrete model of the nonsymmetric theory of elasticity. Ukr Math J 63, 891–913 (2011). https://doi.org/10.1007/s11253-011-0551-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-011-0551-7

Keywords

Navigation