Skip to main content

Volterra quadratic stochastic operators of a two-sex population

  • Published:
Ukrainian Mathematical Journal Aims and scope

We introduce the notion of Volterra quadratic stochastic operators of a two-sex population. The description of the fixed points of Volterra quadratic stochastic operators of a two-sex population is reduced to the description of the fixed points of Volterra-type operators. Several Lyapunov functions are constructed for the Volterra quadratic stochastic operators of a two-sex population. By using these functions, we obtain an upper bound for the ω-limit set of trajectories. It is shown that the set of all Volterra quadratic stochastic operators of a two-sex population is a convex compact set, and the extreme points of this set are found. Volterra quadratic stochastic operators of a two-sex population that have a 2-periodic orbit (trajectory) are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Bernstein, “Solution of one mathematical problem related to the theory of inheritance,” Uch. Zap. Nauchn.-Issled. Kaf. Ukr. Otd. Mat., 1, 83–115 (1924).

    Google Scholar 

  2. R. N. Ganikhodzhaev, “Quadratic stochastic operators, Lyapunov function, and tournaments,” Mat. Sb., 83, No. 8, 119–140 (1992).

    Google Scholar 

  3. R. N. Ganikhodzhaev, “Map of fixed points and Lyapunov function for one class of discrete dynamical systems,“ Mat. Zametki, 56, 1125–1131 (1994).

    MathSciNet  MATH  Google Scholar 

  4. R. N. Ganikhodzhaev and D. B. Éshmamatova, “Quadratic automorphisms of a simplex and the asymptotic behavior of trajectories,” Vladikavkaz. Mat. Zh., 8, 12–28 (2006).

    MathSciNet  Google Scholar 

  5. R. N. Ganikhodzhaev and M. Kh. Saburov, “Generalized model of nonlinear operators of the Volterra type and Lyapunov function,” J. Sib. Fed. Univ. Math. Phys., 2, 188–196 (2008).

    Google Scholar 

  6. Yu. I. Lyubich, Mathematical Structures in Population Genetics, Springer (1992).

  7. U. A. Rozikov and N. B. Shamsiddinov, “On non-Volterra quadratic stochastic operators generated by a product measure,” Stochast. Anal. Appl., 27, No. 2, 353–362 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  8. U. A. Rozikov and U. U. Zhamilov, “F -quadratic stochastic operators,” Mat. Zametki, 83, No. 4, 606–612 (2008).

    MathSciNet  Google Scholar 

  9. U. A. Rozikov and U. U. Zhamilov, “On the dynamics of strictly non-Volterra quadratic stochastic operators on a two-dimensional simplex,” Mat. Sb., 200, No. 9, 81–94 (2009).

    MathSciNet  Google Scholar 

  10. U. A. Rozikov and A. Zada, “On -Volterra quadratic stochastic operators,” Dokl. Mat., 79, No. 1, 32–34 (2009).

    Article  MathSciNet  Google Scholar 

  11. U. U. Zhamilov, “Regularity of F -quadratic stochastic operators,” Uzb. Mat. Zh., No. 2, 35–45 (2008).

  12. U. U. Zhamilov and R. T. Mukhitdinov, “Conditional quadratic stochastic operators,” Uzb. Mat. Zh., No. 2, 31–38 (2010).

  13. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University, Cambridge (1934).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 63, No. 7, pp. 985–998, July, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozikov, U.A., Zhamilov, U.U. Volterra quadratic stochastic operators of a two-sex population. Ukr Math J 63, 1136–1153 (2011). https://doi.org/10.1007/s11253-011-0568-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-011-0568-y

Keywords